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Filtering

In lecture 4, we introduced filtering. Here we’ll spend a bit more time deriving some common
filters and showing how to use them. Recall that an ideal band-pass filter has

B*(eiw) _ 1 Xe [ﬂ-lvﬂ-h]
0 otherwise

and can be written as
B*<€iw> _ Z 6;6_iwj
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Baxter-King

Baxter and King (1999) proposed approximating the ideal filter with one of order J by
solving
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where the constraint may or may not be present. We might want to impose B(1) = 0 so
that the filtered series is stationary, or if we’re constructing a low-pass filter, we might want
B(1) = B(e®®) = 1 to preserve the lowest frequency movements.

The Lagrangian is
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The first order conditions are
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Using the fact that 5= [ e“U~F = 0 4k and 5= [7 B*(w)e™’ = 7, the first order
J
conditions for b; are
. A

Using the constraint to solve for A\ gives:
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To summarize: the Baxter King filter of order J on [m;, 7] constrained to have B(0) = ¢ is
given by

where
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Christiano-Fitzgerald

Christiano and Fitzgerald (1999) propose a generalization of the Baxter-King filter. The
advocate choosing a finite approximation to the ideal filter by solving

min B(By(L)w B*(L)xy)?]

where x; is some chosen process. B;(L) is allowed to use all data available in your sample
of length T'. Note that B;(L) will generally not be symmetric and will change with ¢. As
shown in problem set 1, this is equivalent to solving,
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where S, (w) is the spectrum of z;. The Baxter-King filter can be considered a special case
of this approach where z; is white noise, and we restrict B;() to be time-invariant and only
have b; # 0 for |j| < J. Christiano and Fitzgerald argue that having x; a random walk
works well for macro time-series.

Hodrick-Prescott
Recall that the Hodrick-Prescott filter solves:

min{Z(Tt — 2)* + M(Te41 — 27+ 7im1)?}
Tt
For 1 <t < T — 1, the first order conditions are:
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The first order conditions for t = 0,1,7 — 1,7 are similar. Writing them all in matrix form,
we have
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We can then form our cycle as ¢; = x; — 77.
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