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Spectrum Estimation 

We have a stationary series, {z iω
t} with covariances γ j 

j and spectrum S(ω) = 
�∞

j=  γj e
− . We want to −∞

estimate S(ω). 

Using Covariances 

As in lecture 5, we can estimate the spectrum in the same way that we estimate the long-run variance. 

� 

� 

�

Näıve approach 

We cannot estimate all the covariances from a finite sample. Let’s just estimate all the covariances that we 
can 

1 
T

γ̂j = zj zj−k
T 

j=k+1 

and use them to form 

Ŝ(ω) = 
T −1

γ̂j e
−iωj 

j=−(T −1) 

This estimator is not consistent. It convergers to a distribution instead of a point. To see this, let yω = 
√1

T 

�
t
T 
=1 e

−iωtzt, so that 

Ŝ(ω) = yω ȳω 

If ω = 0 

2Ŝ(ω) S(ω)χ2(2)⇒ 

Kernel Estimator 

ST � � 

Ŝ(ω) = 
� 

1 − |j| 
γ̂j e

−iωj 

ST
j=−ST 

Under appropriate conditions on ST (ST →∞, but more slowly than T ), this estimator is consistent1 This 
can be shown in a way similar to the way we showed the Newey-West estimator is consistent. “ ” 

1In a uniform sense, i.e. P supω∈[−π,π] |Ŝ(ω) − S(ω)| > � 0→ 
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Proof. This is an informal “proof” that sketches the ideas, but isn’t completely rigorous. It is nearly identical 
to the proof of HAC consistency in lecture 3. 

 ST  ST  
|Ŝ( |  ω) − S(ω)  =| − 

�
γ e−iωj +

�
(k (j) − 1)γ e−iωj 

j T j T j j 

|j|>ST j=−ST j=−ST 

 ST  ST  
≤| 

�
γj | + | (kT (j) − 1)γj | + | kT (j)(γ̂j − γj )|

|j|>ST j=

�
−ST j=

�
−ST 

We can interprete these three terms as follows; 
 

1. | j γ  is error |>S truncation| j 
T 

|  

+ 
�

k (j)(γ̂ − γ )  e−iωj |

�
2. | 

�ST

j= S kT
T 
(  (j) − 1)γj | is error from using the kernel −

3. | 
�ST 

j= S kT (j)(γ̂j − γj  is error from estimating the 
T 

)| covariances −

Terms 1 and 2 are non-stochastic. They represent bias. The third term is stochastic; it is responsible for 
uncertainty. We will face a bias-variance tradeoff. 

We want to show that each of these terms goes to zero 

1. Disappears as long as ST →∞, since we assumed ∞

−∞ |γj | < ∞.


2. 
�ST 

j= ST 
(kT (j) − 1) ≤ S

γ
�

T

− j  j= γ−S kT j   j  

�
        kT j     

and ( ) 1 .
T 
| ( ) − 1|| | This will converge to zero as long as ( ) → 1 as

T →∞  |kT j | <  ∀j  

3. Notice that for the first two terms we wanted ST big enough to eliminate them. Here, we’ll want ST 

to be small enough. 

First, note that ˆ ≡ 1 T −j     T γ j 
j       T 

�
k=1 zkzk+j is not unbiased. Eγ̂j = − γj = γ̃j T
 . However, it’s clear that this

bias will disappear as T →∞.


Let  
ξt,j = z 1 T j

tzt+j  γj , so γ̂j  γ̃j =  
−

 ξτ,j . We need to show that the sum of ξt,j goes to zero. 

� 

� � 

− −
�

T τ=1

T −j T −j

E(γ̂j − γ̃j )2 = cov(ξk,j , ξt,j )
1 �� 

T 2 
k=1 t=1 

T −j T −j

≤ 
T 2 

|cov(ξk,j , ξt,j )| 
1 �� 

k=1 t=1 

We need an assumption to guarantee that the covariances of ξ disappear. The assumption that ξt,j are 
sationary for all j and supj k |cov(ξt,j , ξt+k,j )| < C for some constant C implies that 

1 
T −j T −j

C 
T 2 

|cov(ξk,j , ξt,j )| ≤ 
T 

k=1 t=1 

By Chebyshev’s inequality we have: 

> �) ≤ 
E(γ̂j − γ̃j )2 C 

P (|γ̂j − γ̃j | 
�2 

≤ 
�2T 
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Then adding these together: 

ST  ST  � 
P ( γ̂j  γ̃j  > �)  P ( γ̂j  γ̃j  > )
� �

� 

� 

����� � 
����� 

� � � 
� 

� 

� � 

| − | ≤ | −

ST

|
2ST + 1 

−ST −ST 

E(γ̂j − γj )2 

(2ST + 1)2 

�2
≤ 
−ST 

ST C 
(2ST + 1)2 ≈ C1 

ST 
3 

T
≤ 

T 
−ST 

Tso, it is enough to assume S3 

→ 0 as T →∞.T 

Using the Sample Periodogram 

The sample periodogram (or sample spectral density) is the square of the finite Fourier transform of the 
data, i.e. 

T 2 
1 

I(ω) = zte
−iωt 

T 
t=1 

The sample periodogram is the same as the naive estimate of the spectrum that uses all the sample covari­
ances. 

T T
�� 

1 
I(ω) = zte

−iωt zte iωt 

T 
t=1 t=1 

1 
T T� 

= e iω(t−s)ztzs
T 

t=1 s=1 

T −1 T

= eiωj 

T
ztzt−|j|

j=−(T −1) t=|j| 

1 

T 1−� 
= eiωj γ̂j 

j=−(T −1) 

Smoothed Periodogram 

Above, we showed that 
2I(ω) S(ω)χ2(2)⇒ 

It’s also true that, 

lim cov(I(ω1), I(ω2)) =0 
T →∞ 

The sample periodogram is uncorrelated at adjacent frequencies. This suggests that we could estimate the 
spectrum at ω by taking an average over frequencies near ω. That is, � π 

Ŝsp(ω) = hT (ω − λ)I(λ)dλ 
−π 
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where hT () is a kernel function that peaks at 0. It turns out that this estimator is equivalent to a kernel 

� 

� 

� 

� 

� 

�
� � � 

covariance estimator. � π 

Ŝsp(ω) = hT (ω − λ)I(λ)dλ 
−π � π T −1

= γ̂j e
iλj hT (ω − λ)dλ 

−π j=−(T −1) 

T −1 � π 

= γ̂j eiλj hT (ω − λ)dλ 
j=−(T −1) −π 

T −1 � π 

= γ̂j e i(λ−ω)j hT (λ)dλ 
j=−(T −1) −π 

T −1

= γ̂j e
−iωj kT (j) 

j=−(T −1) 

where kT (j) = 
� 
−
π

π e
iλj hT (λ)dλ. kT (j) is the inverse Fourier transform of hT (λ). Conversely, it must be 

that hT (λ) is the Fourier transform of kT (j), i.e. 

hT (λ) = 
1 � 

kT (j)e−iλj 

2π 
j 

Conditions on hT () for consistency can be derived from the conditions on kT in the lecture on HAC estimation, 
but it does not look entirely straightforward. 

VAR ML 

In lecture 7, we said that for a VAR, MLE (with normal distribution) is equivalent to OLS equation by 
equation. We’ll prove that now. The argument can be found in Chapter 11 of Hamilton. 

Proof. Let’s say we have a sample of yt from t = 0...T , and we estimate a VAR of order p, A(L). The model 
is 

p

yt = Akyt−k + et , et ∼ N(0, Ω) 
k=1 

The likelihood of yp, ..., yT conditional on y0, ..., yp−1 is 

f(yp, ..., yT |y0, ..., yp−1) =f(yp+1, ..., yT |y0, ..., yp−1)f(yp|y0, ..., yp−1) 
. . . 

=πt
T 
=pf(yt|yt−1, ..., yt−p) 

Each f(yt|yt−1, ..., yt−p) is simply a normal distribution with mean p 
Akyt−k and variance Ω, so k=1 

f(yp, ..., yT y0, ..., yp−1) =πT |Ω−1| 
exp 

1
(ytA(L))�Ω−1(ytA(L))t=p|

(2π)n 
− 

2 

So the conditional log likelihood is 

T

L(A, Ω) = − 
(T − p)n 

log(2π) + 
T − p 

log |Ω−1 1 � 
(ytA(L))�Ω−1(ytA(L))

2 2 
| − 

2 
t=p 
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� 

� � 

� 

� 

� 

� � � � � � � 

� 

� � 

� � 

Let Â(L) be the equation by equation OLS estimate of A(L). We want to show that Â(L) minimizes L(A, Ω). 
To show this we only need to worry about the last term. 

T

(ytA(L))�Ω−1(ytA(L)) (1) 
t=p 

Some different notation will help. Let xt = [yt−1 ... yt−p]�, and let Π = [A1 A2 ... Ap Π. We ]. Similarly define ˆ
can rewrite (1) as 

T T

(ytA(L))�Ω−1(ytA(L)) = (yt − Π�xt)�Ω−1(yt − Π�xt)

t=p t=p


T

= (yt − Π̂�xt + ( Π̂� − Π�)xt)�Ω−1(yt − Π̂�xt + ( Π̂� − Π�)xt) 
t=p 

T

= (�̂t + ( Π̂� − Π�)xt)�Ω−1(�̂t + ( Π̂� − Π�)xt) 
t=p 

T

= �̂�tΩ
−1�̂�t + 2�̂�tΩ

−1(π̂� − π)xt + x�t(Π̂− Π)Ω−1(Π̂� − Π�)xt 

t=p 

The middle term is a scalar, so it is equal to its trace. 

2�̂t
�Ω−1(π̂� − π)xt = trace 2�̂�tΩ

−1(π̂� − π)xt 

=2trace Ω−1(π̂� − π) xt�̂t
� = 0 

xt�̂t = 0 because �̂t are OLS residuals and must be orthogonal to xt. So, we’re left with 

T T

(ytA(L))�Ω−1(ytA(L)) = �̂t
�Ω−1�̂t

� + xt
� (Π̂− Π)Ω−1(Π̂� − Π�)xt 

t=p t=p 

Only the second term depends on Π. Ω−1 is positive definite, so x�t(Π̂− Π)Ω−1(Π̂� − Π�)xt is minimized when 
x�t(Π̂− Π) = 0 for all t, i.e. when Π = Π̂. Thus, the OLS estimates are the maximum likelihood estimates. 

To find the MLE for Ω, just consider the first order condition evaluated at Π = Π̂: 

T
∂L 

= 
∂L (T − p)n 

log(2π) + 
T − p 

log Ω−1 1 � 
�̂t
�Ω−1�̂�t∂Ω−1 ∂Ω−1 

− 
2 2 

| | − 
2 

t=p 

= 
T − p 

Ω − 
1 � 

�̂t�̂t
� = 0 

2 2 

Ω = ˆ 1 � 
�̂t�̂

�
t
T − p
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