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Variance Decomposition 

Suppose we have a VAR and we have some way to identify orthonormal shocks, so that 

y  C̃ �
t = (L)ut and  Eutut = Ik 

Impulse response functions let us report how y responds to changes in u. Another question 
we might ask is: how important is variation in u for explaining variation in y? This question
is addressed by reporting variance-decompositions. Then the error of the forecast of yt+s 

given all information up to time t is 

s 

y ˜

t̂+s|t − yt+s =

�

Cs−kut+k 

k=1 

So the MSE of the forecast is 

s 

MSE y ˜ ˜ �

− y  C I C

of the shocks by looking at


s  C̃ ˜ �

  s−k1jj C
V (s, j) =


�
k=1 s−k

MSE(ŷt+s|t − yt+s) 

where 1jj is a matrix of all zeros except for the jth diagonal element, which is one. V (s, j) 
is the portion of the variation in y at horizon s due to shock j. 

Table 1 shows a variance decomposition from Blanchard-Quah (1989). 

Kilian (1998) – Bootstrap after Bootstrap 

In Lecture 8, we saw that the bootstrap can be used to construct confidence intervals and to 
bias correct nonlinear functions of consistent estimates. Our motivation for introducing the 
bootstrap was to compute confidence intervals for impulse-response functions. We said that 

( t̂+s|t t+s) =
�

s−k k s−k 

k=1 

Then we can decompose the variance of yt at different horizons into components due to each 
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Table 1:


Horizon
(Quarters)

1

2

3

4

8

12

40

99.0
(76.9, 99.7)

99.6
(78.4, 99.9)

99.0
(76.0, 99.6)

97.9
(71.0, 98.9)

81.7
(46.3, 87.0)

67.6
(30.9, 73.9)

39.3
(7.5, 39.3)

51.9
(35.8, 77.6)

63.9
(41.8, 80.3)

73.8
(46.2, 85.6)

80.2
(49.7, 89.5)

87.3
(53.6, 92.9)

86.2
(52.9, 92.1)

85.6
(52.6, 91.6)

Output

Percentage of variance due to demand

Unemployment

Variance decomposition of output and unemployment (Change in output growth at 1973/1974: 
unemployment detrended)

Figure by MIT OpenCourseWare.
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the asymptotic distribution of impulse-response functions might be a poor approximation 
because the impulse-response function is nonlinear function of our AR coefficients. One 
might also wonder whether the impulse-response function has bias that bootstrap can correct. 
Kilian (1998) addresses this question. 

Let the model be: 

A(L)yt = et where A(L) is order p 

Let �(A(L), �) denote the impulse response function. Kilian proposes the following bootstrap 
after bootstrap algorithm: 

1. Estimate Â(L), �̂, êt by OLS 

ˆ2. Compute a bias correction for A(L), i.e. 

(a) For b = 1..B ˆ, sample    e�t,b , form y� − �
 from êt t,b = A(L) 1et,b. 

 Â(b) Estimate �
b (L) by OLS on � yt,b. 

(c) the ˆEstimate bias  1 �B ˆ� = � 
b A ˆ

B
(L=1 b (L) − A ) 

3. Apply the bias correction to form Ã(L), but preserve stationarity ˆif A(L)yt is stationary 

of det(Â ˜ ˆ(a) If a root (z)) is inside the unit circle (nonstationary), let A(L) = A(L) 

(b) If ots of ˆall ro det(A(z ˜))  outside the unit ˆare circle (stationary), let A(L) = A(L)− 
�̂(1  �)j

− , where j is the minimal non-negative integer such that all the roots of 
det(Ã(L)) are outside the unit circle 

˜ ˜ ˆ4. Bootstrap A(L) and �(A(L), �) 

b = 1..B, ˜(a) For sample � � et,b from ẽt, form yt,b = � A(L)−1et,b. 

ˆ(b) Estimate (  Ã�
b L ˆ) and ��

b 

˜(c) Bias correct as ˜above to form A� 
b . This would lead to a nested, bootstrap within 

a bootstrap. If that is too burdensome, you can reuse the original bias estimate, 
�̂. 

(d) Compute �� ˜
b (Ã

� 
b , �

�
b ) 

(e) Use quantiles of �� ˜̃
b (

 A�
b , �

�
b ) to form a confidence region. 

Kilian proves that this procedure is asymptotically valid. He also gives some simulation 
evidence of its finite sample performance. In his simulations, the bootstrap after bootstrap 
calculates confidence intervals of impulse responses better than the traditional bootstrap and 
the asymptotic distribution. 
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Figure 1: Impulse-response of TFP
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Beaudry and Portier (2006) 

Beaudry and Portier study the relationship between stock prices and TFP. They are inter­
ested in the ability of stock prices to forecast future TFP. They run a VAR on log TFP 
growth and log stock index growth. They consider two different identification schemes. 

1. short-run: one of the shocks cannot have a contemporaneous effect on TFP 

2. long-run: one of the shocks cannot have a long-run effect on TFP 

One could think of approach 1 as identifying a shock to stock prices that is orthogonal to 
current and past TFP. Approach 2 identifies a shock that is responsible for long-run TFP 
changes. Their main finding is that these two shocks are nearly identical. 

Beaudry and Portier’s dataset can be downloaded from the AER website. On the class 
website, there is the Matlab code used to create figures 1 and 2. I wrote this code in an hour 
or two, so it is not very well-documented, it probably is not robust, and may not even be 
correct. Nonetheless, it could be useful for problem set 2. 

20 

http://www.e-aer.org/data/sept06/20030282_data.zip
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Figure 2: Impulse-response of SI
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