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Hansen, Heaton, and Yaron (1996): In a Monte Carlo example of consumption 

CAPM, two-step optimal GMM with with many overidentifying restrictions is bi-
ased. Continuously updated GMM estimator (CUE) is much less biased. 

CUE: Let Ω̂(β) =  
P 
i gi(β)gi(β)

0/n. 

β̂CUE = argmin ĝ(β)
0Ω̂(β)−1ĝ(β). 

β 

LIML analog. 

Altonji and Segal (1996): In Monte Carlo examples of minimum distance estimation 

of variance matrix parameters, two-step optimal GMM with with many overidenti-
fying restrictions is biased. GMM with an identity weighting matrix is much less is 
biased. 

Give some theory that explains these results. 
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Higher-order Bias and Variance 

Stochastic Expansion: Estimators that come from smooth (four times continuously 
differentiable) moment conditions have an expansion of the form 

n 1/2(β̂ − β0) =  ψ̃ + Q1(˜ a)/n1/2 + Q2(˜ a, ̃ψ, ̃ ψ, ̃ b)/n + Op(1/n
3/2), 

where Q1 and Q2 are linear in each argument,  are smooth,  ψ(z), a(z), b(z), 
are mean zero random vectors, and ψ̃ = 

P 
i ψ(zi)/n

1/2 , ã = 
P 
i a(zi)/n

1/2 , 
˜ P 
b = i b(zi)/n

1/2 . 

An approximate bias is given by 

Bias(β̂) =  E[Q1(˜ a)]/n = E[Q1(ψ(zi), a(zi))]/n.ψ, ̃
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Simple example: 
nX 

β̂ = r(z̄), r(z) smooth, z̄ = zi/n. 
i=1 

GMM estimator with g(z, β) =: 

Expand around μ	= E[zi]; with  β0 = r(μ) :  

√
n(β̂ − β0) = 	r0(μ)

√
n(z̄ − μ) + r00(μ)n(z̄ − μ)2/2

√
n 

+r000(μ)n 3/2(z̄ − μ)3/6n + [r000(z̃)− r000(μ)]n 3/2(z̄ − μ)3/n 

where z̃ is between z̄ and μ. Here  ψ(z) =  a(z) =  b(z) =  z − μ, Q1(ψ, a) =  
r00(μ)ψa/2. 

Bias is 
Bias(β̂) = a00(μ)V ar(zi)/2n. 
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Approximation works quite well in describing how bias depends on number of mo
-
ment conditions. Breaks down if identification is very, very weak.


This is where bias formula for 2SLS comes from.


Can also get a variance approximation, though does not work as well.


Can interpret as the bias of an approximating distribution, i.e. there is a precise

sense in which dropping the higher order terms is OK.


Can use this approximation to select moments to minimize higher-order mean square

error; Donald and Newey (2001).


Can also use it to compare different GMM esitmators, like CUE.
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Bias of GMM: 

Recall GMM notation. Let 

gi = gi(β0), Gi = ∂gi(β0)/∂β, 

Ω = E[gigi
0], G  = E[Gi], 

Σ = (G0Ω−1G)−1,H  = ΣG0Ω−1, P  = Ω−1 − Ω−1GΣG0Ω−1 

a = (a1, ..., ap), aj ≡ tr(ΣE[∂2 gij(β0)/∂β∂β
0])/2 

Bias for GMM has three parts: 

Bias(β̂GMM) = BG +BΩ +BI, 

BG = −ΣE[Gi
0Pgi]/n, 

BΩ = HE[gigi
0Pgi]/n, 

BI = H(−a +E[GiHgi])/n. 
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Bias(β̂GMM) =  BG +BΩ +BI, 

BG = −ΣE[Gi
0Pgi]/n,BΩ = HE[gigi

0Pgi]/n,BI = H(−a+E[GiHg 

Interpretation: BG is bias from estimating G, BΩ is bias from estimating Ω, and  

BI is bias for GMM estimator with moment functions G0Ω−1gi(β). 

BG : Comes from correlation of Gi and gi; endogeneity is the source; Example: 

gi(β0) =  Zi(yi − Xi
0β), Gi = −ZiXi

0, gi = Ziεi;Ω = σε
2E[ZiZi

0],³ ´ 
E[Gi

0Pgi] =  E[Xiε]E[Zi
0PZi] = E[Xiε]tr PE[ZiZi

0] = E[Xiε]σ
−
ε 
2(m− p), 

under homoskedasticity. E[Gi
0Pgi] nonzero due to correlation of Xi and εi. Grows  

at same rate as m. Consistent with large biases in Hansen, Heaton, and Yaron 

(1996). 

BΩ : Zero if third moments zero, e.g. E[εi
3|Zi] = 0 in IV setting. Nonzero 

otherwise, generally grows with m (certainly magnitude of gi
0Pgi does). Consistent 
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with biases in Altonji and Segal (1996) (where Gi is constant so BG = 0), where 
gi includes is covariance moment condittions 

Continuous updating GMM (CUE): 

β̂CUE = arg  min ĝ(β)0Ω̂(β)−1ĝ(β). 
β 

Bias of CUE: 

Bias(β̂CUE) =  BΩ + BI. 

Eliminates bias due to endogeneity and estimation of Jacobian in optimal linear 
combination of moments. Explains Hansen, Heaton, and Yaron (1996). 

CUE is a Generalized Empirical Likelihood (GEL) estimators. All GEL estimators 
eliminate BG; some also eliminate BΩ. 

GEL: For concave function ρ(v) with domain an open interval containing zero. 

nX 
β̂GEL = arg  min sup ρ(λ0gi(β)). 

β λ i=1 

Computation: Concentrate out λ, using analytical derivatives for β.
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Special cases of GEL:


CUE: Any quadratic ρ(v) (i.e. ρ(v) = A +Bv + Cv2),


Empirical Likelihood (EL): For ρ(v) = ln(1 v),
−
n n nXXX 

β̂ = arg  max  lnπi, πi = 1, πigi(β) = 0. 
β,π1,...,πn i=1 i=1 i=1 

Exponential Tilting (ET): For ρ(v) = − exp(v), 

n n n

β̂ = arg  min  πi lnπi, πi = 1, πigi(β) = 0. 
X 

β,π1,...,πn i=1 i=1 i=1 

Bias for GEL: For ρj(v) = ∂jρ(v)/∂vj, ρj = ρj(0), ρ0 = 0, ρ1 = −1, ρ2 = −1, 

X 

Bias(β̂GEL) = BI + (1 +  
ρ3)BΩ. 
2

For EL, ρ3 = ∂3 ln(1− v)/∂v3 = −2, so Bias(β̂EL) = BI . 

X 

Also,  EL is higher-order efficient. Higher-order variance smaller than direct bias 
correction. 
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Probabilities: For ĝi = gi(β̂) and v̂i = λ̂
0
ĝi, GEL probabilities for each obser-

vation are given by 
nX 

π̂i = ρ1(v̂i)/ ρ1(v̂j), (i = 1, ..., n). 
j=1 P n β̂) efficiently estimates E[a(z, β0)], subject to moment conditions. i=1 π̂ia(zi, 

Can explain bias results by interpreting first-order conditions. Let Ĝi = ∂gi(β̂)/∂β 
and k̂i = [ρ1(v̂i) + 1]/v̂i (k̂i = −1 for v̂i = 0). P
First-order condition for β: Differentiate i ρ(λ

0gi(β)) with respect to β X 
0 =  ρ1(v̂i)Ĝ

0
iλ̂. 

i 
First-order condition for λ : X X X 

0 =  ρ1(v̂i)ĝi = [ρ1(v̂i) + 1]ĝi − nĝ(β̂) =  k̂iĝiĝi
0λ̂− nĝ(β̂) 

i i i 

Solve for λ̂ = n 
³P 

i k̂iĝiĝi
0
´ −1 

ĝ(β̂). Plug into previous equation and divide, ⎛ ⎞⎛ ⎞−1 X X 
0 =  ⎝ π̂iĜi

⎠⎝ k̂iĝiĝi
0⎠ ĝ(β̂) 

i i 
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First-order conditions for GEL:
⎛ ⎞⎛ ⎞−1 X X 
0 = ⎝ π̂iĜi

⎠⎝ k̂iĝiĝi
0⎠ ĝ(β̂) 

i i 

CUE, k̂i = (v̂i − 1 + 1)/v̂i = 1, so first order conditions are ⎛ ⎞⎛ ⎞−1 X X 
0 = ⎝ π̂iĜi⎠⎝ ĝiĝi

0/n⎠ ĝ(β̂). 
i i 

EL, k̂i = (−(1− v̂i)−1 + 1)/v̂i = (1− v̂i − 1)/v̂i(1− v̂i) = −1/(1− v̂i), so  ⎛ ⎞⎛ ⎞−1 X X 
0 = ⎝ π̂iĜi⎠⎝ π̂iĝiĝi

0⎠ ĝ(β̂). 
i i 

All use efficient weighting in Jacobian part of first-order conditions, EL uses efficient 
weighting in second moment matrix, CUE uses standard weighting. 

Efficient weighting removes correlation of matrix with moments, i.e. removes bias. 

All GEL have efficient Jacobian. EL has efficient second moment matrix. In Altonji-
Segal Monte Carlo design EL bias not as small as one would have hoped. 
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Higher-Order Efficiency


ˆ \Let B = E[Q1(ψ(zi), a(zi))]. Bias corrected estimator is 

θ̃ = θ̂ − B̂/n. 

Higher order variance of θ̃ is 

Vn = Σ + Ξ/n, Σ = E[ψ(zi)ψ(zi)
0], 

Ξ = 
n→∞{V ar(

˜ Q1 + ˜ ψ
0
] +  E[˜ Q1 + Q̃2)

0]}lim Q1) +  E[(
√
n ˜ Q2)˜ ψ(

√
n ˜

+Acov(
√
n(B̂ − B), ψ ) +  Acov(˜ B0 − B0))˜ 0 ψ, 

√
n( ˆ

Famous result, conjectured by Fisher, show later by Rao, Pfanzagl and Wefelmeyer, 
is that bias corrected MLE is higher order efficient. 

Extends to GMM. Bias corrected EL is higher-order efficient. With discrete data, 
bias corrected EL becomes MLE in large samples. Discrete data can approximate 
any data. 
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Choosing Among Instruments (Donald and Newey (2001)). 

Linear simultaneous equation, one endogenous explanatory variable: 

yi = Xi
0βi + εi,Xi = (Yi, Zi

0
1)
0, 

Yi = Ȳi + vi, 

Ȳi reduced form for variable Yi. Let j index instrument set, Z(j) a n× Kj matrix 

of instrumental variable observations for. Z(j)0ε/n 
p 

0 for each j, so  each  −→
instrument set is valid. Let Pj = Z(j)[Z(j)0Z(j)]− 1Z(j)0 be projection matrix 
on jth instruments. Let 

X = [X1, ...,Xn]
0, Y  = (Y1, ..., Yn)

0, y  = (y1, ..., yn)
0 

jth instrument set the 2SLS and LIML esitmators are respectively 

β̂j = (X
0PjX)

− 1X 0Pjy, β̃j = argmin  
(y − Xβ)0Pj(y − Xβ) 

. 
β (y − Xβ)0(y − Xβ) 
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Choose among instrument sets 1, ..., J  by minimizing a large Kj estimate of mean 
square error (MSE). 

Let Z̄ be some fixed, large set of instruments that does not vary with j, β̄ the IV 
estimator (2SLS or LIML), ε̄ = y − X ̄ v = (I − Z̄(Z̄0Z̄)−1 ¯0)Y ,β, ¯ Z

σ2 ε0ε/n, σ̂2 
v 

0v/n, ̂ 0v/n, ̂ σ2 
v − 

σ̂

σ
εv 
2

2 .ˆε = ¯ ¯ = v̄ ¯ σεv = ε̄ ¯ γ = ˆ
ˆε 

Let v̂j = (I − Pj)Y , R̂j = v̂j
0 v̂j/n + σ̂2 

vKj/n. 

Ŝ2SLS(j) = σ̂εv 
2 Kj 

2

+ σ̂ε 
2R̂j, ŜLIML = γ̂σ̂ε 

2Kj 
+ σ̂ε 

2R̂j. 
n n 

Choose 2SLS estimator β̂j that minimizes Ŝ2SLS(j). 

Choose LIML estimator β̃j that minimizes ŜLIML(j). 

Note:  LIML has  smaller MSE  for large  Kj. 
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Monte Carlo


Model is joint normal (Gaussian) with 

yi = β0Yi + εi, Yi = Zi
0π + vi, 

and reduced form coefficients ³ ´ k 
πk = c(K̄)

µ
1− 

K̄ + 1

¶4 
for k = 1, .., K̄ . 

K̄ is maximal number of instruments, c(K̄) is chosen so π0π = R2 
f/(1 − Rf

2), 

where Rf 
2 is the reduced form r-squared. Each Z(j) is first j columns of the 

matrix of all instrumental variables, so here Kj = j. Sample  sizes  are  n = 100, 

where K̄ = 20  and 5000 replications, and n = 1000, where  K̄ = 30  and 1000 
replications. Estimators were 2SLS-all and LIML-all which are 2SLS and LIML 

(respectively) using all K̄ instruments. Estimators using the data driven number 
of instruments are denoted 2SLS-op and LIML-op. Estimates of σεv and σ2 

ε were 
obtained using estimates of the two equations using the number of instruments 
that were optimal for estimating the first stage based on cross-validation. 
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σu� Estimator 

N = 100  N = 1000  
Med. 
Bias 

Med. Dec. 
AD Rge 

Cov. 
Rate 

Med. 
Bias 

Med. Dec. 
AD Rge 

Cov. 
Rate 

0.5 OLS 0.495 0.495 0.226 0.000 0.496 0.496 0.068 0.000 
2SLS-all 0.473 0.473 0.502 0.323 0.377 0.377 0.382 0.278 
2SLS-op 
LIML-all 

0.398 
0.370 

0.602 2.954 
0.872 4.796 

0.825 
0.912 

0.216 
0.057 

0.284 0.888 
0.403 1.846 

0.759 
0.931 

LIML-op 0.400 0.548 1.851 0.904 0.162 0.267 0.937 0.904 
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Angrist and Krueger (1991) emipirical application.


Instrument Set K Cross-Val. Ŝ2SLS ŜLIML 
Q 
Q+Q*Y 
Q+Q*S 
Q+Q*Y+Q*S 

63 
90 
213 
240 

10.154409 
10.154451 
10.154288 
10.154282 

4.1435071 
4.1440244 
4.1499843 
4.1521275 

4.2338311 
4.2338357 
4.2337091 
4.2336937 
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Instrument Set K 2SLS LIML 
Q 
Q+Q*Y 
Q+Q*S 
Q+Q*Y+Q*S 
Optimal 

63 
90 
213 
240 
K̂ 

0.1077 
0.0869 
0.0991 
0.0928 
0.1077 
0.0195 

0.1089 
0.0905 
0.1152 
0.1064 
0.1064 
0.0144 

Fuller delivers similar answers.
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Many Instrument Asymptotics


Estimates from Angrist and Krueger (1991) with optimal instrument set are:


Optimal 2SLS ( K̂ = 63)  LIML (K̂ = 230)  
.1077 .1064 
(.0195) (.0144) 

2SLS and LIML estimates similar but LIML (with 180 overidentifying restrictions) 
seems to have smaller standard errors. 

What about problem that asymptotic approximation poor and variance larger with 
many instruments? 

This problem is accounted for in the standard error reported here. 

Based on an asymptotic approximation where the number of instruments grows at 
the same rate as the sample size.  

Leads to an approximation to the distribution of t-ratios with error rate not de-
pending on the number of instruments. 
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n 1/2(β̂LIML − β0) =  ψ̃ + Q1(˜ a)/n1/2ψ, ̃ + op(1), 

Q1(ψ,˜ ã)/n1/2 is asymptotically normal and uncorrelated with ψ̃ when number of 
instruments K grows at the same rate as the sample size. 

Requires homoskedasticity: Under heteroskedasticity β̂LIML not consistent when  

K grows as fast as n; more on this below. 

First result on this is Bekker (1994). 

Gives consistent standard errors under Gaussian (εi, vi), or when have zero third 

moments and no kurtosis. 

Hansen, Hausman, and Newey (2007), Estimation with Many Instrumental Vari-
ables, give results for non Gaussian disturbances. Variance matrix formula is dif-
ferent than Bekker (1994) with nonnormality but not much different if K/T is 
small. 
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To describe the Bekker (1994) variance estimator, let P = Z(Z0Z)− 1Z0 be the 
projection matrix used to form β̂LIML and 

ε̂ = y − Xβ̂LIML, σ̂
2 
ε = ε̂0ε̂/T , α̂ = ε̂0P ̂ε/ε̂0ε̂, X̂ = X − ̂ε(ε̂0X)/ε̂0ε̂, 

Ĥ = X0PX  − ˆ 0X, Σ̂ = σ̂2 
ε[(1− ˆ 2X̂0PX̂ + α̂2X̂0(I − P )X̂]αX α)

The Bekker variance estimator is 

V̂ = Ĥ− 1Σ̂Ĥ− 1 

d p√ 
n(β̂LIML − β0) −→ N(0, V  ), nV̂ −→ V. 

Can show V̂ bigger than usual variance formula and can be substantially so even 
when K/n is small. 

Ex: Monte Carlo based on Angrist and Krueger (1991). 

Bias/β RMSE Size 

2SLS -0.1440 0.0168 0.318 
LIML -0.0042 0.0168 0.133 
Bekker SE’s 0.049 
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Many Instruments and Heteroskedasticity


LIML is not consistent with heteroskedasticity.


"Jackknife" version is, Hausman, Newey, Woutersen, Chao, and Swanson (2007).


ˆ rgmin Q̂(β), Q̂(β) =
(y − X0β)P (y − X 0β)− 

P 
i Pii(yi − Xi

0β)2 
.βHLIM = a

β (y − X 0β)0(y − X 0β) 
Heteroskedasticity/many instrument robust standard errors: 

Let X̄ = [y,X], α̃ be the smallest eigenvalue of (X̄0X̄)− 1(X̄0PX̄− 
P 
i PiiX̄iX̄i

0), 
and H̃ = X PX  − 

P 
αX X. Then  0

i PiiXiXi
0 − ˜ 0 X 

H− 1(X Py  − αX y),β̂HLIM = ˜ 0 PiiXiyi − ˜ 0

i 

For ε̃ = y − Xβ̂HLIM and X̃ = X − ̃ε(X 0ε̃)/ε̃0ε̃, let 
nX X X 

Σ̃ = X̃iPikε̃
2 
kPkjX̃j

0 + Pij 
2 X̃iε̃iε̃jX̃j

0

i,j=1 k/∈ {i,j} i=j 

The variance estimator is 6 

Ṽ = H̃− 1Σ̃H̃− 1 , 
d p√ 

n(β̂HLIM − β0) −→ N(0, V  ), nV̂ −→ V. 
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Median Bias 
μ2 K  LIML HLIM HFUL HFUL1 JIV E  CUE

k 

8 0 −0.001 0.050 0.078 0.065 −0.031 −0.001 
8 8 −0.623 0.094 0.113 0.096 0.039 0.003 
8 28  −1.871 0.134 0.146 0.134 0.148 −0.034 
32 0 −0.001 0.011 0.020 0.016 −0.021 −0.001 
32 8 −0.220 0.015 0.024 0.016 −0.021 0.000 
32 28 −1.038 0.016 0.027 0.017 −0.016 −0.017 

Nine Decile Range: .05 to .95 
μ2 K LIML HLIM HFUL HFUL1 JIV E  CUE

k 

8 0 2.219 1.868 1.494 1.653 4.381 2.219

8  8 26.169 5.611 2.664 4.738 7.781 16.218

8 28  60.512 8.191 3.332 7.510 9.975 1.5E+012

32 0 0.941 0.901 0.868 0.884 1.029 0.941

32 8 3.365 1.226 1.134 1.217 1.206 1.011

32 28 18.357 1.815 1.571 1.808 1.678 3.563
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