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Continuous Intstrument


Heckman and Vytlacil (2000, Economics Letters)


Model assumptions: Drop the i subscript.


1. Z is continuously distributed 

2. D = 1(D∗ > 0), D∗ = μ(Z) − V, V is continuously distributed. 

3. Z and (Y1, Y0, V ) independent 

4. E |Y1| <∞, E |Y0| <∞. 

Condition (2) is index model assumption. 

Vytlacil (2002, Econometrica) shows that index model (assumption 2.) is equivalent 
to LATE when 1), 3), 4) hold. 

Can add covariates X by making assumptions hold conditional on X. Here  drop  
X. 
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D = 1(D∗ > 0), D∗ = μ(Z)− V 

Let 

P (Z) = Pr(D = 1|Z);U = FV (V ). 

Then 

P (Z) = Pr(V ≤ μ(Z)) = FV (μ(Z)) 

= Pr(U ≤ P (Z)). 

A key identified object is 

E[Y1 − Y0 | U = u]. 

Marginal Treatment Effect (MTE) 

Average treatment effect for those individuals who are whose particpation would 

be affected if P (Z) were greater or lower than  u. Similar to LATE. 
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To show identification of MTE note that D = 1 if and only if U ≤ P (Z), so 

E[Y | P (Z) = p] = E[DY1 + (1− D)Y0 | P (Z) = p] 

= E[Y0 | P (Z) = p] +E[D(Y1 − Y0) | P (Z) = p] 

= E[Y0] +E[Y1 − Y0 | D = 1, P  (Z) = p] Pr(D = 1 | P (Z) = p) 

= E[Y0] +E[Y1 − Y0 | U ≤ p]p 

= E[Y0] +E[E[Y1 − Y0 | U ] | U ≤ p]p 

= E[Y0] +E[1(u ≤ p)E[Y1 − Y0 | U ]|U ≤ p]pZ p

= E[Y0] +  E[Y1 − Y0 | U = u]du.


0


Summary: For all p in the support of P (Z), 

∂ 

∂p
E[Y | P (Z) = p] = E[Y1 − Y0 | U = p]. 

MTE is identified over the support (range) of P (Z). 
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∂ 

∂p
E[Y | P (Z) = p] = E[Y1 − Y0 | U = p]. 

Interpretation: 

E[Y1 − Y0 U = p] =  lim  
E[Y | P (Z) = p̃]− E[Y | P (Z) = p] | 

p̃ p p̃− p→
E[Y | P (Z) = p̃]− E[Y | P (Z) = p] 

= lim 
p̃ p E[D | P (Z) = p̃]− E[D | P (Z) = p]→

Infinitesimal IV. 
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Other treatment effects parameters can be written in terms of MTE. 

Average Treatment Effect. Z 1

ATE = E[Y1 − Y0] = E[E[Y1 − Y0 | U ]] = E[Y1 − Y0 | U = u]du


0
Z 1 ∂E

=

0 ∂p 
[Y | P (Z) = p] = E[Y | P (Z) = 1]− E[Y | P (Z) = 0]. 

ATE is identified at the boundary; Sometimes referred to as identification at infinity. 

Need support of P (Z) to include 1 and 0 to have identification. 
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Average effect of Treatment on the Treated


TT 	 = E[Y1 − Y0 | D = 1] =  E[Y1 − Y0 | U ≤ P (Z)] 

= E[E[Y1 − Y0 | U,P (Z)] | U ≤ P (Z)] 

= E[E[Y1 − Y0 | U ] | U ≤ P (Z)] 
E[1(U ≤ P (Z))E[Y1 − Y0 | U ]] = 

Pr(U ≤ P (Z)) 
E[E[1(U ≤ P (Z))|U ]E[Y1 − Y0 | U ]] = 

E[E[1(U ≤ P (Z))|U ]] 
E[{1 − FP (U)}E[Y1 − Y0 | U ]] = 

E[1 − FP (U)] 

Weighted average of MTE: Z 
TT  = W (u) 

∂E[Y | P (Z) =  u]
du,w(u) =  

1 − Fp(u) 

∂ E[1 − Fp(u)] 
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Another formula good for estimation


TT  = E[E[Y1 − Y0 | U ] | U ≤ P (Z)] 

= E[ 
∂E[Y |P (Z) =  p] ̄̄̄¯̄



| U ≤ P (Z)]


∂p p=U Z P (Z) ∂E[Y |P (Z) =  p]


∂p

=
 E[
 dp]/E[E[1(U ≤ P (Z))|Z]]


0


=	 E[{E[Y |P (Z)] − E[Y |P (Z) = 0]}/E[P (Z)] 
E[Y ] − E[Y | P (Z) = 0]  

= 
E[P (Z)] 
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Policy Effects.


ATE or TT does not directly answer policy questions.


Could look at policy changes, ask how change affects average outcome.


E[Y |after]− E[Y |before]


Y could be utility but in practice usually just use some observed Y (like log earn
-
ings).


Extension of Stock (1989) to treatment effects model where there is endogeneity.


Stock (1989): g0(X) = E[Y |X] Z Z 
g0(x)F̃ (dx)− g0(x)F0(dx). 

Heckman, Vytlacil consider class of policies that affect P (Z), probability of partic-
ipation, but does not affect (Y1, Y0, U). 

Economic binary choice interpretation: P (Z) is transformation of differences in 
observed utilitities, U is unobserved individual heterogeneity. So policy affects 
observed part of utility. 
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˜Suppose each individual has new probability, denoted P. 


D̃ = 1(U ≤ P̃ ) is new treatment.


Policy treatment effect is (definition)


R R 
μ(P̃ ) =  

E[Y | P (Z) = p]F
P̃
(dp)− E[Y | P (Z) = p]FP (dp) 

. 
E[P̃ ]− E[P ] 

Denominator is normalization. Makes this a weighted average of MTE. 

Note that E[Y |P (Z) = p] is a function of E[Y1− Y0|U ] and so does not depend 

on the distribution of Z, and so is stable across movements from P to P̃ . 
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R R 
μ(P̃ ) =  

E[Y | P (Z) = p]F ̃ (dp)− E[Y | P (Z) = p]FP (dp) 
. P 

E[P̃ ]− E[P ] 

Identification requires P̃ included in support of P. 

Recall 

Y = 1(U ≤ P (Z))Y1 + 1(U > P  (Z))Y0 

Also (Y1, Y0, U) independent of P (Z). 

Thus changing P̃ is change in exogenous part of model. 

Can only answer question of whether this is an interesting policy effect in the 
context of some economic model. 

IV has been criticized because it is not this. 

Could also ask whether this is an interesting policy parameter in economics models. 
Not answered yet. 
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Policy affect is weighted average of MTE. 

Let p be smallest point in the support of P (Z). Then  Z 
E[Y | P (Z) = p] =  

p ∂E[Y | P (Z) = t]dt 
+E[Y | P (Z) = p]. 

p ∂t 

Also by ∂E[Y |P
∂t 
(Z)=t]

= E[Y1 − Y0|U = t] =MTE(t) It follows that Z Z 
E[Y P (Z) = p]F ̃ (dp)− E[Y | P (Z) = p]FP (dp)P

| Z Z  Z Z  
= 

p

p ∂E[Y | P
∂t 

(Z) = t]
dtFP̃ (dp)− 

p

p ∂E[Y | P
∂t 

(Z) = t]
dtFP (dp) 

p p p p 
= 

Z ¯
[ 
Z ¯

F ̃ (dp)]MTE(t)dt − 
Z ¯∙Z ¯

FP (dp)
¸
MTE(t)dtP p t p t
Z p̄ h i


= FP (t)− F ̃ (t) MTE(t)dt
P p 

For denominator, E[P ] = E[1(U ≤ P )] = E[{1− FP (U)}] so n o Z p̄ h i 
E[P̃ ]− E[P ] = E[ 1− F ̃ (U) ]− E[{1− FP (U)}] =  FP (t)− F ̃ (t) dtP P p 
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Summarizing:
Z Z 
E[Y P (Z) = p]F ̃ (dp)− E[Y | P (Z) = p]FP (dp)P

| Z p̄ h i 
= FP (t)− F ̃ (t) MTE(t)dtP p 

n o Z p̄ h i 
E[P̃ ]− E[P ] = E[ 1− F ̃ (U) ]− E[{1− FP (U)}] =  FP (t)− F ̃ (t) dt

P P p 

So, 

( t)
μ(P̃ ) =  

Z 
w(t)MTE(t)dt, w(t) = R ¯ h FP̃ t)− FP ( i 

p F ̃ (u)− FP (u) dup P 

Identification requires that the support of P̃ be contained in the support of P . 
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What does instrumental variables estimate.


Consider instrument that is some transformation J(P ) of P.


Numerator of plim of IV estimator is
³ ´ Z Z p

Cov(J(P ), Y  ) =  E[ J − J̄ E[Y |P ]] = {J(p) − J̄}{ 

p 
MTE(t)dt}fP (p)dp
Z Z p̄

= [ {J(p) − J̄}fP (p)dp]MTE(t)dt. 
t 

Denominator of plim of IV is ³ ´ ³ ´ 
Cov(J(P ),D) =  E[ J − J̄ E[D|P ]] = E[ J − J̄ P ] Z Z 

= {J(p) − J̄}{ 
p

p 
dt}fP (p)dp Z Z p̄

= [ {J(p) − J̄}fP (p)dp]dt 
t 
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Summarizing
 Z Z p̄
Cov(J(P ), Y  ) =  [ 

t 
{J(p)− J̄}fP (p)dp]MTE(t)dt, Z Z p̄

Cov(J(P ),D) =  [ {J(p)− J̄}fP (p)dp]dt. 
t 

So, Z
Cov(J(P ), Y  ) v(t) 

= w(t)MTE(t)dt, w(t) = R , 
Cov(J(P ),D) v(s)ds Z p̄

v(t) =  
t 
{J(p)− J̄}fP (p)dp 

Weight is positive if J(p) is monotonic increasing. Why? 

Could have negative weight if instrument not monotonic in P. 
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Selection on Observables 

Another model is where conditioning on (or identifiable) variables Xi makes treat
-
ment exogenous.


Like removing omitted variable bias.


Assume


E[Yi0|Xi,Di] = E[Yi0|Xi]. 

That is, Yi0 is mean independent of Di conditional on Xi. 

Conditional version of E[Yi0|Di] =  E[Yi0], being a conditional version of that 
hypothesis. 
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E[Yi0|Xi,Di] = E[Yi0|Xi]. 

Where does Xi come from? 

Would be great to have a model. 

In some applications the source of Xi not clear. 

Identification is fragile, requiring specifying just the right Xi. 

Conditional mean independence that holds for Xi need not hold for a subset of Xi 

nor when additional variables are added to Xi. 
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E[Yi0|Xi,Di] = E[Yi0|Xi]. 

Need additional condition for identification of TT.


Let X denote the support of Xi (the smallest closed set having probability one).


Let X0 and X1 the support of Xi conditional on Di = 0 and Di = 1 respectively.


Common support condition


.X = X0 = X1

Necessary and sufficient for E[Yi|Xi,Di = 1] and E[Yi|Xi,Di = 0] to be well 
defined for all Xi. 

It is like the rank condition for identification in this setting. 

It is verifiable; not often satisfied in practice. 
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Common support condition and conditional mean independence give 

E[Yi|Xi,Di	 = 1]− E[Yi|Xi,Di = 0]  

= E[αi + βi|Xi,Di = 1]− E[αi|Xi,Di = 0]  

= E[αi|Xi,Di = 1]− E[αi|Xi,Di = 0] +E[βi|Xi,Di = 1]  

= E[βi|Xi,Di = 1]. 

E[βi|Xi,Di = 1] is TT  conditional on X. 

By iterated expectations 

TT  = E[βi|Di = 1] = E[{E[Yi|Xi,Di = 1]− E[Yi|Xi,Di = 0]}|Di = 1]. 

Different notation: 

E[Y |X,D] = α(X) + β(X)D.


Then E[Yi|Xi,Di = 1]− E[Yi|Xi,Di = 0] = β(X), so 

TT  = E[β(Xi)|Di = 1]. 
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For the ATE, assume Yi1 is mean independent of Di conditional on Xi. In that 
case 

E[βi|Xi,Di	 = 1] = E[Yi1|Xi,Di = 1]− E[Yi0|Xi,Di = 1]  

= E[Yi1|Xi, ]− E[Yi0|Xi] = E[βi|Xi]. 

Therefore 

ATE	 = E[βi] = E[{E[Yi|Xi,Di = 1]− E[Yi|Xi,Di = 0]}] 
= E[β(Xi)] 

ATE is a different function of the data than ATT. 

TT  = E[β(Xi)|Di = 1], 

ATE = E[β(Xi)]. 
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Estimating ATT and ATE:


Use nonparametric regression to get


β̂(X) =  Ê[Y |X,D = 1]  − Ê[Y |X,D = 0]. 

Then 
n nX X dTT  = Diβ̂(Xi)/ Di, 
i=1 i=1 
nX[ ˆATE = β(Xi)/n. 
i=1 

Root-n consistent under regularity conditions.


See Hahn (2004), Imbens and Ridder (2006) for different estimators.
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Subject to curse of dimensionality when Xi is large dimensional. 

Try to curb the curse using propensity score 

P (Xi) = Pr(Di = 1|Xi) = E[Di|Xi]. 

Have Rosenbaum and Rubin result that for 0 < P (Xi) < 1, 

E[αi|Xi,Di] = E[αi|Xi] = E[αi|P (Xi),Di] = E[αi|P (Xi)].⇒ 

For same reason as before, under E[αi|Xi,Di] = E[αi|Xi]. 

TT  = E[{E[Yi|P (Xi),Di = 1]− E[Yi|P (Xi),Di = 0]}|Di = 1]. 

Similarly, if in addition, E[Yi0|Xi,Di] = E[Yi0|Xi] then 

ATE = E[{E[Yi|P (Xi),Di = 1]− E[Yi|P (Xi),Di = 0]}]. 

Now have one dimensional nonparametric regression (with dummy) if P (X) known. 

If P (Xi) is completely unknown and unrestricted there is no known advantage for 
this approach. 

It appears that advantage of using propensity score depends on knowing something 
about P (X). 
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To show propensity score result, let Pi = P (Xi).


Theorem: For any Wi, E[Wi|Xi,Di] = E[Wi|Xi] = E[Wi|Pi,Di] = E[Wi|Pi]
⇒ 

Proof: By iterated expectations, 

E[Di|Pi] = E[E[Di|Xi]|Pi] = Pi 

By iterated expectations again, 

E[Wi|Pi,Di = 1] = E[E[Wi|Xi,Di = 1]|Pi,Di = 1] = E[E[Wi|Xi]|Pi,Di = 1]  
E[DiE[Wi|Xi]|Pi] E[PiE[Wi|Xi]|Pi] = = 

E[Di|Pi] Pi

= E[E[Wi|Xi]|Pi] = E[Wi|Pi].


Similarly, E[Wi|Pi,Di = 0] = E[Wi|Pi]. 
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