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Panel data control for individual effects correlated with regressors.


Well known how to do this in linear models with additive effects.


Nonlinear model harder.


General set up:


Data: Yi = [Yi1, ..., YiT ]
0,Xi = [Xi1, ...,XiT ]

0, (i = 1, ..., n).


A linear model:


Yit = Xit
0 β + αi + ηit, E[ηit|Xi, αi] = 0. 

Alternative, equivalent formulation: 

E [Yit|Xi, αi] = X0
itβ + αi. 

Specifies the conditional mean of Yi given Xi, αi, and  β. 

Likelihood specifies conditional pdf f(y|x, α, θ) of Yi given Xi, αi and parameter 
vector θ. 
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Example: Normal linear model: For eT a T × 1 vector of 10s, 

Yi|(Xi, αi) ∼ N(Xiβ + αieT , σ
2IT ). 

This is distributional version of a linear model.


Binary choice model: Yit ∈ {0, 1}; e.g. labor force participation.


Yit, (t = 1, ..., T  ) independent, Prob(Yit = 1|Xi, αi) =  G(Xit
0 β + αi). 

Count data: Yi1, ..., YiT indep, Yit|Xi, αi Poisson with mean exp(Xit
0 β + αi). 

Linear model method is to transform data so αi drops out. Differencing gives 

i,t−1β+E[αi|Xi]) = (Xit−Xi,t−1) β,E [Yit − Yit−1|Xi] =  Xit
0 β+E[αi|Xi]−(X0 0


In nonlinear model, αi does not drop out when we difference.


Binary choice example (What about linear probability model?):


E [Yit − Yit−1|Xi] =  E[G(Xit
0 β + αi) − G(Xit

0
−1β + αi)|Xi]. 
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Fixed Effects and the Incidental Parameters Problem


Fixed effects is maximizing the log-likelihood over each αi as well as θ.


Fixed effects generally inconsistent in nonlinear model as n grows with T fixed.


In a linear model, least squares treating αi as a parameter to be estimated is

consistent.


Maximum likelihood treating αi as a parameter to be estimated is generally not.


This is known as the incidental parameters problem.


It is caused by only having T observations to estimate each αi, so  that as  n grows

the estimate of  αi remains random.


In linear models this randomnes gets "averaged out." In nonlinear models it does

not.
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Limit of the fixed effects estimator as n grows with T fixed. 

Estimator X1 n

θ̂ = arg  max  ln f(Yi|Xi, θ, αi). 
θ,α1,...,αn n i=1 

Concentrate out αi: For  a  fixed θ each fixed effect is given by 

α̂i(θ) = max ln f(Yi|Xi, θ, αi). α 

Substituting in and maximize over θ to get θ̂, 

X1 n

θ̂ = arg  max ln f(Yi|Xi, θ,  α̂i(θ)). 
θ n i=1 

By the usual extremum estimator, as n grows for fixed T the estimator θ̂ has plim 

θT = arg  maxE[ln f(Yi|Xi, θ,  α̂i(θ))]. 
θ 
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θT = arg  maxE[ln f(Yi|Xi, θ, α̂i(θ))]. 
θ 

Randomness in α̂i(θ) leads to inconsistnecy of θ̂. 

α̂i(θ) = max ln f(Yi|Xi, θ, αi). α 

If α̂i(θ) were replaced by 

ᾱi(θ) = arg  maxE[ln f(Y |X, θ, α)],
α 

would get consistency. Like measurement error in nonlinear model. 

Example: Binary logit, Yit ∈ {0, 1}, G(u) =  eu/(1 + eu). 

Known that the  fixed effects estimator β̂FE  satisfies 

p
β̂FE  → 2β0 

Bias in β̂ can be severe. Not so severe in Tobit model. 
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Example: Gaussian linear model, FE estimator of σ2 converges to


σ2 
T = 

T − 1 
σ2 . 

T 

Bias in estimates of marginal effects less severe. 

In binary choice, marginal effect is Z 
[G(X̃0β0 + α) − G(X̄0β0 + α)]Fα(dα). 

Fixed effects estimator is 
nX 

G(X̃0β̂ + α̂i) − G(X̄0β̂ + α̂i)]/n 
i=1 

Hahn and Newey (2004) show quite small biases for probit.


Return to this below.


Discuss now how can get consistent estimators.
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Conditional Maximum Likelihood 

Occasionally there is statistic Si such that αi drops out of the conditional likelihood 

of Yi given Xi and Si. 

That is, 

f(Yi|Xi, Si, θ, αi) = f(Yi|Xi, Si, θ). 

Conditional MLE (CMLE). 

nX 
θ̂ = argmax  f(Yi|Xi, Si, θ)

θ i=1 

Consistent and asymptotically normal, and asymptotically efficient when the distri-
bution of αi conditional on Xi is unrestricted. 

Problem is Si only exists in a few cases, including Gaussian linear model, logit 
binary choice, oisson model for count data, and proportional hazards model. 

In most other models there is no such Si, so conditional MLE has limited usefulness. 
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Identification Issue: 

θ may not be identified in the semiparametric model where the conditional pdf of 
Yi given Xi, αi is specified as f(y|x, α, θ) and the conditional pdf of αi given Xi 

is unspecified. 

Chamberlain (1992): T = 2; Pr(Yit = 1|Xi, αi) = G(α0dit + x0itβ0 + αi), 
di1 = 0, di2 = 1, G0(u) > 0 everywhere, other regularity conditions. If Xi is 
bounded then β0 is not identified if G(u) is not logistic. 

Also can show that θ0 is not identified for T = 2, Pr(Yit = 1|Xi, αi) = Φ(β0Xit+ 

αi), Xit ∈ {0, 1}. See following graph. 
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Extent of nonidentification (e.g. for censored models) is not clear.


No consistent estimator in nonidentified cases.


Could directly estimate identified set.


Recent progress, Honore and Tamer (2006) and other work.


Difficult when Xit takes on many values. 


Other approaches are a) restrict distribution of αi given Xi; b) find clever estimators

for identified models; c) large T fixed effect bias corrections; 
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Correlated Random Effects: 

Restricts conditional distribution of αi given Xi.


Here consider parametric models; there are nonparametric and semiparametric ver
-
sions.


Let g(α|X, γ) be conditional pdf of α given X.


Likelihood of Y given X is integrates out α, as in  Z 
f(Y |X,β, γ) =  f(Y |X,β, α)g(α|X, γ)dα.


The MLE is given by 
n n Z

1 X 1 X 
β̂, γ̂ = arg  max ln f(Yi|Xi, β, γ) =  ln f(Yi|Xi, β, α)g(α|Xi, γ)dα 

β,α n ni=1 i=1 

Consistency of β̂ depends on the g(α|X, γ) being correctly specified.


May be difficult to calculate the integral.


Also, hard to form g(α|X, γ) in time consistent fashion.
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Example: Correlated random effects probit. 

Yit = 1(Yit
∗ > 0) where conditional on (Xi, αi), Yi

∗
1, ..., Y  iT

∗ are independent 
and Yit

∗ has distribution N(Xit
0 β0 + αi, σt 

2). Let  xi = vec(Xi
0) be the vector 

of all observations across t on the regressors. Suppose also that the conditional 
distribution of αi given Xi is N(xi

0λ, σ2 
α). Note that conditional on Xi, 

Yit
∗ ∼ N(Xit

0 β0 + xi
0λ, σ2 

t + σα
2 ). 

Then for θ = (β0, λ0, σ1
2, ..., σ2 , σα

2 )0 and et the tth T × 1 unit vector, T ⎞⎛ 

Xit
0 β + xi

0λ qPr(Yit = 1|Xi, θ) = −xi0λ)/σα2 )dα = Φ
⎜⎝

⎟⎠


σ2 + σ2 
t α ³ ´ et ⊗ β + λ 

= Φ x0iπt , πt = q . 
σ2 + σ2 
t α 

This is a marginal likelihood for Yit. 

Joint likelihood is very complicated. Yi1, ..., YiT not independent conditional on 

Xi. This is generally true in models where integrate out αi. 
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Estimation: Do marginal likelihood (probit) to get π̂1, ...,  π̂T . Normalize δ1 = 1q
and let δt = 1/ σ2 

t + σ2 
α, (t = 1, ..., T  ), where we normalize δ1 = 1. Repara-

meterize so that θ = (β0, λ0, δ2, ..., δT )
0 and for π = (π1

0 , ..., π0T )
0 let ⎞⎛ 

h(π, θ) = 
⎜⎝


δ1π1 − e1
.
⊗ β − λ 
.
.
 ⎟⎠
.


δTπT − eT ⊗ β − λ 

We can then do minimum distance, using π̂ = (π̂01, ..., π̂
0
T )
0 mentioned above. 

θ = argminh(π̂, θ)Wh(π̂, θ).ˆ 0 ˆ
θ 

h(π̂, θ) is linear in θ so easy to do. 

Efficient two-step estimator. For V̂ an estimator of the joint asymptotic variance 
of π̂, let  ̃θ = argminθ h(π̂, θ)

0V̂ −1h(π̂, θ). Then let D̂ = diag(I,  ̃δ2I, ..., ̃δT I) 

where I is an identity matrix with the same dimension as π. Then D̂V̂ D̂ is estimator 
of  the variance of  

√
n(π̂ − π0), so optimal minimum distance is ³ ´ 
θ = argminh(π̂, θ) DV̂ D̂ h(π̂, θ).ˆ 0 ˆ −1 

θ 
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Empirical example from Chamberlain (1984).


Labor force participation, with n = 924 and T = 4, four years. 1968, 70, 72, 74.


Two Xit number of children under 6 and number of children. Here are the results:


Probit -.121 -.058 Logit .-573 -.336 
(.046) (.029) (.115) (.120) 

Quite different estimates; ratios are similar. 

Correlated random effects depends on T in an essential way.


Many coefficients. A more parsimonius model is αi N(X̄i
0λ, σ2 

α), X̄i =
PT
t=1Xit/T. 

∼
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Marginal Effects 

Marginal effect  for change in  X is, for F (α) the CDF of α, Z 
μt(X̃) − μt(X), μ(X) =  Φ((X0β0 + α)/σt)F (dα) 

By iterated expectations, holding X fixed, 

μt(X) =  E[1(X 0β0 + αi + ηit > 0)] = E[E[1(X 0β0 + αi + ηit > 0)|Xi]] 

= E[Φ(δt(X
0β0 + xi

0λ0))] 

This object can be estimated by 

nX 
μ̂t(X) =  Φ(δ̂t(X

0β̂ + x0iλ̂))/n 
i=1 

Would be interesting to compare this estimator with fixed effects marginal effect in 

the empirical example. 
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Some Semiparametric Results 

Some distribution free results that are useful. 

Poisson model: Conditional on (Xi, αi), Yit is independent over time and Poisson 

with mean eXit
0 β+αi. Good model for patents; see Hausman, Hall, Griliches (1984). 

Wooldridge showed that consistency of CMLE only requires 

E [Yit|Xi, αi] = eXitβ+αi 

Binary choice: Manski maximum score estimator; Conditions for consistency include

infinite support.


Tobit: Honore


Manski and Honore require homoskedasticity over time.


Does not hold in linear model applications.
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Large T Fixed Effects Bias Correction


Let θT denote plim of fixed effects estimator.


As T grows limT −→∞ θT = θ0.


Under smoothness,

B 1 

θT = θ0 + + O( ). 
T T 2

Example: Gaussian linear model 

T − 1 σ2 B 
σ2 = 

T
σ2 = σ2 − 

T 
= σ2 + 

T
,B  = − σ2 .T 

Also n and T grow, we should have 

³ ´ 
d

(nT )1/2 θb − θT −→ N(0, Ω). 
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³ ´ 
θT = θ0 + 

B 
+O(

1
), (nT )1/2 b d

, Ω). 
T T 2

θ − θT −→ N(0

As a way to think about how bad fixed effects bias can  be, consider  n/T ρ.→³ ´ ³ ´ 
(nT )1/2 θb − θ0 = (nT )1/2 θb − θT + (nT )1/2(θT − θ0) ³ ´ b= (nT )1/2 θ − θT + (nT )1/2

B 
+O((nT )1/2/T 2)

T³ ´ 
d −→ N Bρ1/2 , Ω . 

Here there is asymptotic bias.


Consequently, usual asymptotic confidence intervals incorrect.


Asymptotic normality of θb, centered at its probability limit, like misspecification


result (e.g. White, 1982).
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Analytical Bias Correction 

Find formula for B, construct estimator B̂. Bias corrected estimator is 

ˆ = θ̂ − ˆθ1 B/T. 

To show when this works, suppose 

(nT )1/2(B̂ − B)/T 
p 
0.→ 

For example, if B̂ itself has (nT )1/2 (B̂ − B) asymptotically normal then holds. 

Plugging in as before we get, ³ ´ ³ ´ 
(nT )1/2 θb1 − θ0 = (nT )1/2 θb − θT 

ˆ+(nT )1/2(θT − θ0 − B/T ) ³ ´ 
= (nT )1/2 θb − θT + (nT )1/2(B − B̂)/T 

+O((nT )1/2/T 2) 

d −→ N (0, Ω) . 
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Iterated Analytical Correction


Often the bias formula will depend on θ, so that  B̂ = B̃(θ̂).


Can iterate the bias correction:


θ̂j = θ̂ − B̃(θ̂j−1)/T. 

Iterating to convergence would give 

θ̂∞ = θ̂ − B̃(θ̂∞)/T. 

Does not improve asymptotic properties. 

Can improve small sample properties. 
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Jackknife Bias Correction


Use how θ̂ changes with T to form implicit bias correction.


Does not require formula for B.


Let θ̂(t) denote fixed effects estimator not using tth time period.


Jackknife estimator is

TX 

θe ≡ Tθb − (T − 1) θb(t)/T. 
t=1 

Explain with expansion, 

B D µ 
1 ¶

θT = θ0 + + + O . 
T T 2 T 3

imit of θe for fixed T and how it changes with T shows bias correction. 


p 
µ 
1 1 ¶ µ ¶

θ̃ → TθT − (T − 1) θT −1 = θ0 + 
T 
− D + O

T 2µ ¶ T − 1
1 

= θ0 + O . 
T 2
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Example: Variance estimation in Gaussian l model (Neyman and Scott, 1948):


zit is i.i.d. with distribution N(αi, θ0).


Here 

θT = 
T − 1 

θ0 = θ0 − 
θ0 . 

T T 

Thus B = −θ0. Analytical correction: 

θ̂1 = θ̂ + θ̂/T 
p 
µ
T − 1

+ 
T − 1¶ 

θ0→ 
T T 2 

Is  not consistent for  fixed T.  Iterating analytical correction is 

ˆ θ̂ + ˆθ∞ = θ∞/T, 
Tˆ ˆθ = θ.∞ 

T − 1 

Can also show that this is jackknife. Here is consistent for fixed T . 
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Monte Carlo Example: Like Heckman (1981). Design is: 

yit = 1(xitθ0 + αi + εit > 0), 

αi ∼ N(0, 1), εit ∼ N(0, 1), 

xit = t/10 + xi,t−1/2 +  uit, 

xi0 = = U(−1/2, 1/2).ui0, uit 
N = 100, T  = 8;  β = 1, −1. 

Marginal effect is average derivative of Φ(x0θ + α), 

μ = θ0Ē[φ(x
0θ0 + αi)]. 

The fixed effects estimator of this object is 

n ³ ´X 
μ̂ = θ̂ φ x0θ̂ + α̂i /n. 

i=1 

Consider analytical and jacknife bias corrections.
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Table Three: Properties of θ̂, T = 8. 
Estimator of θ0 Mean Med. SD p̂; .05 p̂; .10 

MLE 1.18 1.17 .151 .267 .370 
Jackknife .953 .950 .119 .056 .102 
Analytic 1.05 1.05 .134 .062 .135 
Analytic-M 1.05 1.05 .132 .060 .126 

Table Five: Properties of θ̂, T = 4  
Estimator of θ0 Mean Med. SD p̂; .05 p̂; .10 

MLE 1.42 1.41 .397 .269 .373 
Jackknife .752 .743 .262 .100 .177 
Analytic 1.12 1.11 .306 .055 .101 
Analytic-M 1.21 1.20 .335 .102 .172 
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Table Four: Properties of μ̂, T = 8. 
Estimator of μ/μ0 Mean Med. SD p̂;.05 p̂;.10 

MLE 1.02 1.02 .131 .078 .140 
Jackknife 1.00 .992 .130 .086 .159 
Analytic 1.02 1.02 .133 .090 .153 
Analytic-M 1.02 1.02 .131 .087 .154 

Table Six: Properties of μ̂, T = 4. 
Estimator of μ/μ0 Mean Med. SD p̂; .05 p̂; .10 

MLE 1.00 1.00 .257 .103 .168 
Jackknife 1.06 1.05 .307 .159 .224 
Analytic .996 .994 .265 .113 .178 
Analytic-M 1.05 1.05 .266 .117 .185 
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Bounds for Marginal Effects:


Assume Xit ∈ {0, 1}. Pr(Yit = 1|Xi, αi) =  Φ(θ0Xit + αi).


Object of interest


Z 
μ0 = [Φ(θ0 + α) − Φ(α)]F0(dα) 

Average change in the probability of Yit = 1.


Let 
−
0 

→
denote T × 1 vectors of 00 0s respectively.


→
and 

−
1 s and 1

Define Z 
μ∗ = 

→ →
[Φ(θ0 + α) − Φ(α)]F0(dα|Xi ∈/ {

−
0 , 
−
1 }). 

Then μ∗ is identified. 
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Z 
μ∗ = [Φ(θ0 + α)− Φ(α)]F0(dα|Xi /

→ →
.∈ {−0 , −1 })

μ∗ is identified. 

Proof: Consider X /∈ {−0 , −1 }. Then  there  is  t(X) such that xt(X) = 1  and
→ →

s(X) such that xs(X) = 1. Then  we  have  

E[yi,t(X) − yi,s(X)|Xi = X] = E[yi,t(X) − yi,s(X)|Xi = X,αi]|Xi = X]Z 
= [Φ(θ0 + α)− Φ(α)]F0(dα|Xi = X). 

Let P (X) = Pr(Xi = X). Then X 
μ∗ = P (X)E[yi,t(X) − yi,s(X)|Xi = X]. 

X/
→→∈{−0 ,−1 } 
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X 
μ∗ = P (X)E[yi,t(X) − yi,s(X)|Xi = X]. 

X/∈{−0 ,
−
1 }→→

Cannot identify 
R 
[Φ(θ0 + α) − Φ(α)]F0(dα|−

→ →
x ) for x ∈ {−0 , 

−→ 1 }. 

μ∗ is over identified for T >  2. 

Simple estimator:


Let n∗ = #{i : Xi /
→ →
∈ {−0 , 
−
1 }}. 

1 X X ³ ´ 
μ̂∗ = yi,t(X) − yi,s(X) . n∗ 

X/
→→∈{−0 ,
−
1 } {i|Xi=X} 
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Bounds for μ0. 

¯ →
> 0) . Let P 0 ) + P (

−
1 )Let D = 1 (μ = P (

− →
∗ 

(1− P̄ )μ∗ − (1− D)P̄ ≤ μ0 ≤ μ∗(1− P̄ ) +DP̄

Tight bounds use the form Φ(θ0 + α)− Φ(α).


Bounds shrink to a point exponentially fast at T grows.


There are 2T possible X so P (
−
0 )+P (

−
1 ) will shrink like C2−T for some constant 


→ →

C. 

This fast shrinkage rate might be conjectured fom the bias corrections. 

In smooth models (all derivative existing) one can form a bias correction that 
approaches the truth at T −J for any integer J. 
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