
14.385


Nonlinear Econometrics


Lecture 1. Basic Overview of Some Principal 

Methods. 
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Main Methods to be Covered in the Course: 

1. Moment Methods (Generalized Method 

of Moments, Nonlinear IV, Z-estimation), in­

cluding moment inequalities (later in the course). 

2. Extremum Methods (MLE, M-estimators,


quantile regression, minimum distance, GMM).


3. Bayesian and Quasi-Bayesian Methods. 

All methods are interrelated. 
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Example 1: Optimizing behavior of eco­

nomic agents. 

A representative agent maximizes expected util­

ity from consumption, Hansen and Singleton 
(1982). Euler (first-order) conditions for opti­

mizing behavior imply a conditional moment 
restriction 

E[ρ(zt, θ0) xt] = 0, |

where xt represents information available at 
time t or before, and 

ρ(zt, θ) = θ1(ct+1/ct)
θ2Rt+1 − 1. 

where ct is consumption in t and Rt+1 is the 
return on an asset between t and t + 1. Here 
θ1 is time discount factor and per-period utility 
function is (ct)θ2+1. 

Generalized Method of Moments (GMM)

is the main method for dealing with the mo­

ment restriction. 
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In many cases GMM is known as Nonlinear 

Instrumental Variable estimator. In statis­

tics, the analogs of GMM are known as Z-

estimators or Estimating Function estima­

tors. 

GMM Notation: 

θ : p × 1 parameter vector. 

zi : data observation. 

g(z, θ) : and r × 1 vector-function, r ≥ p. 

Main Assumption: z1, ..., zn are independently 

and identically distributed (i.i.d.) with 

E[g(z, θ0)] = 0. 

The problem is to estimate θ0 from the avail­

able data. 

Generalized Method of Moments (GMM): 

Cite as: Victor Chernozhukov, course materials for 14.385 Nonlinear Econometric Analysis, Fall 2007. MIT OpenCourseWare 
(http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 



For 

ĝ(θ) := En[g(zi, θ)]. 

θ̂ minimizes ĝ(θ)�Âĝ(θ). 

where Â is a positive semi-definite (p.s.d.) ma­
trix. En is the empirical expectation operator: 

1 n

En[g(zi, θ)] := 
� 

g(zi, θ), 
n i=1 

The estimator sets the empirical moments as 
close as possible to their population counter­
parts, which are known to be 0. 

Properties: Consistent Asymptotically Nor­
mal (CAN). 

Choice of Â that minimizes asymptotic vari­
ance is a consistent estimator of the asymp­
totic variance of 

√
nĝ(θ0). 

A = 
�
lim V ar[

√
nĝ(θ0)]

�−1 
. 

n 
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For E[g(zi, θ0)g(zj, θ0)
�] = 0 for i =� j (no auto-

correlation in the moment function) an optimal 
choice of weighting matrix is 

A = 
�
E[g(zi, θ̃)g(zi, θ̃)

�]
�−1 

, 

This can be estimated by 

Â = 
�
En[g(zi, θ̃)g(zi, θ̃)

�]
�−1 

, 

where θ̃ is a preliminary (GMM) estimator. One 
can iterate on the estimate. 

Conditional Moment Restrictions: Often 
have residual vector ρ(z, θ) satisfying a con­
ditional moment restriction 

E[ρ(z, θ0) x] = 0. |
Then by iterated expectations, for any con­
formable matrix B(x) of functions of x, we 
have 

g(z, θ) = B(x)ρ(z, θ)


satisfy unconditional moment restrictions. Can 
think of B(x) as instrumental variables, in which 
case the estimator is known as the Nonlinear 
Instrumental Variable Estimator. 
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Maximum Likelihood Estimation 

Notation: 

θ : p × 1 parameter vector. 

zi : data observation; e.g. zi = (yi, xi). 

f (z θ) : family of density or probability functions.
|

Data Assumption: z1, ..., zn are i.i.d. with 

zi having pdf f(z θ0).|

The key fact is that 

θ0 maximizes E[ln f(zi θ)],|
which is a consequence of information in­

equality. 

Maximum Likelihood Estimator (MLE): 

θ̂ maximizes En[ln f(zi θ)].|
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Properties: Consistent and asymptotically nor­

mal (CAN) and asymptotically efficient. 

Thus, MLE is asymptotically the most efficient

estimator if f(z θ) is correct. But, estimator
|
may not be consistent if f(z θ) is misspecified.
|

Conditional and Marginal MLE: Often we 
do not want to specify the entire distribution 
of the data. For example, we generally do not 
want to specify distribution of regressors. Re­

call the classical normal regression model as 
the primary example. 

Suppose that the data take the form z = (y, x) 
and the density can be factored as 

f(z θ) = f(y x, β)h(x γ),
| | |

where β and γ are subvectors of θ, f (y x, β) is
|
a conditional density of y given x and h(x γ) is
|
a marginal density for x. 
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Then we can consider the estimator that max­

imizes the log-likelihood from either the con­

ditional or the marginal part. 

Conditional MLE (CMLE): 

β̂ maximizes En[ln f(yi xi, β)]|
This estimator is CAN and asymptotically effi­


cient when the information matrix for (β, γ) is


block-diagonal, and when h(x γ) has unknown
|
functional form. Here x can often be thought 

of as regressors, where we leave the marginal 

distribution unspecified, so that the CMLE is 

efficient. 
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| �

Example (Censored Regression Model of 
Type I): The following example often arises 
when wages are top-coded or censored in other 
ways. The equation of interest is 

= xYi
∗ �

iβ0 + ui, 

but we only observe 

Yi = min{Yi
∗, L}. 

Simple least squares where we regress Yi on 
xi
�β on the resulting data will give an incon­

sistent estimate, because the error does not 
satisfy the usual orthogonality condition E[Yi − 
xi
�β0 xi] = 0. A way to deal with the problem 

is to use likelihood methods that explicitly ac­
count for how the data is generated. 

The log-likelihood for a single observation (y, x) 
conditional on x is 

ln f(y x, θ) = 1(y < L) ln[f(y x, θ)]| |
+ 1(y = L) ln Pr[y = L x, θ].|
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Note that likelihood is a mixture of discrete 

and continuous distribution. 

Let’s specify each of the pieces. Suppose ui is 

independent of xi and is distributed N(0, σ2). 

Then for the standard normal pdf φ(u) with a 

cdf Φ(u) we have 

Pr(y = L|x, β, σ2)	 = Pr(ui ≥ L − x�β|x, β, σ2) 

= 1 − Φ((L − x�β)/σ) 

= Φ((x�β − L)/σ). 

Also, for y < L the conditional pdf of y given 

x is 

f (y|x, β, σ) = σ−1φ((y − x�β)/σ), y < L. 

Then the log-likelihood for a single observation 

(y, x) conditional on x is 

ln f(y|x, β, σ2) =	 1(y < L) ln[σ−1φ((y − x�β)/σ)] 

+ 1(y = L) lnΦ((x�β − L)/σ). 

Cite as: Victor Chernozhukov, course materials for 14.385 Nonlinear Econometric Analysis, Fall 2007. MIT OpenCourseWare 
(http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 



The consistency of the MLE for estimating θ0 

will depend crucially on the correctness of the 

normality assumption, in particular upon the 

distributional shape of the upper tail. Cen­

sored quantile regression methods introduced 

later do not require strong distributional as­

sumptions. 

Another way to relax the distributional assump­

tions is to make use of more flexible models of 

distributions. For example, take a t-family for 

the error term instead of the normal family. 

Example 2 Contd. (Type-II Censored Re­

gression Model or Selection Model): The 

equation of interest is 

Yi
∗
2 = x�iβ02 + ui2, 

and we observe Yi2 = Yi
∗
2 if 

Yi
∗
1 = x�iβ01 + ui1 ≥ 0. 
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For unobserved values of Yi
∗
2, we set Yi2 = 0. 

We also observe Yi1 = 1(Yi
∗
1 > 0). 

In the context of labor force participation, this 
models a two-part decision process: first a per­

son decides whether to work or not, on the 
basis of some index Yi1, and then decides how 
many hours Yi2 to work. This is all given the 
circumstances modeled by xi and disturbances 
ui1 and ui2. 

The conditional log-likelihood function for a 
single observation (y2, y1) takes the form 

ln f(y2, y1 x, θ) = 1(y1 = 0) ln Pr[y1 = 0 x]|
+ 1(y1 = 1)

� 
ln 

�
f [y2 x, y1 

|
= 1] 

x]
��

|
· Pr[y1 = 1| . 

We can parametrically specify each piece, us­

ing the joint normality of disturbances and their 
independence from regressors. Then write the 
conditional likelihood function and proceed with 
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maximum likelihood estimation. You will work 

through many details of this in HW. 

Marginal MLE: 

γ̂ maximizes En[ln f(xi γ)].|
This estimator is CAN and asymptotically ef­


ficient when f(y x, β) has unknown functional
|
form or when β and when information matrix 

for β and γ is block-diagonal. This can be 

thought of as throwing away some data. 

Need an example here. 
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M-estimators are a generalization of MLE, 
and the name stands for “maximum likelihood 
like estimators.” Another name, more often 
used in econometrics, is Quasi Maximum Like­

lihood Estimator (QMLE). 
The parameter θ0 is known to solve 

θ0 minimizes Em(z, θ) 

and the estimator takes the form 

θ̂ minimizes Enm(z, θ). 

Example (Quantile Regression). Other than 
linear and nonlinear least squares, an important 
example is the median regression, or least ab­

solute deviation estimator, where m-function 
takes the form m(z, θ) = |Y − X �θ|, so that the 
estimator minimizes 

En[|Y − X �θ|]. 
Median regression aims to estimate the condi­

tional median of Y given X, modeled by X �θ0. 
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Quantile regression is a generalization of the 

median regression that aims to estimate the 

τ −conditional quantile of Y given X. Quan­

tile regression minimizes the asymmetric ab­

solute deviation with m-function m(z, θ) equal 

to 

ρτ (Y − X �θ) := τ |Y − X �θ|+ +(1 − τ )|Y − X �θ|−, 

where τ ∈ (0, 1). 
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Minimum Distance Estimation 

Notation: 

θ : p × 1 parameter vector of interest


π̂ : preliminary “reduced form estimator” 

h(π, θ) : r × 1 vector function of the parameters, 

where r ≥ p. 

Data Assumption: π̂ is a consistent estima­

tor of a parameter vector π0. The parameter 
of interest θ0 is an (implicit) function of θ0 
defined by: 

h(π0, θ0) = 0. 

Thus, here the data enters only through the 
parameters estimator π̂. 

Minimum Distance Estimator (MDE): The 
estimator is obtained from 

θ̂ minimizes h(ˆ � ˆ π, θ).π, θ) Ah(ˆ
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),

�

where Â is a positive semi-definite (p.s.d.) ma­

trix. Idea is that estimator sets h(π̂, θ) close to 

population counterpart of 0. 

Properties: CAN. Choice of Â that minimizes 

asymptotic variance is 

ˆ ˆ d
A = Ω−1 , for 

√
nh(π̂, θ0) N(0, Ω). → 

Form of ˆ π and h.Ω depends on ˆ

Example. Combining data from different sources 

for instrumental variables estimation. Suppose 

that we are interested in estimating the slope 

δ0 of an equation 

Yi = α0+δ0Di+ui = Xi
�β0+ui, Xi

� = (1, Di), β
� = (α, δ 

where Di is a dummy variable taking on 0 or 

1. Suppose also that there is an instrument 

zi available, with Cov(zi, ui) = 0 Cov(zi, Di) = 

0. The problem is that individual data is not 

available. Instead, for Zi
� = (1, zi) one has 

Cite as: Victor Chernozhukov, course materials for 14.385 Nonlinear Econometric Analysis, Fall 2007. MIT OpenCourseWare 
(http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 



an estimator π̂ZX of πZX = E[ZiXi
�] from one 

data set and another estimator π̂ZY of πZY = 

E[ZiYi] from another data set. The instrument 

orthogonality condition gives 0 = E[Ziui] = 

πZY − πZXβ0. This condition can be exploited 

to form a MDE as β̂ minimizes 

(π̂ZY − π̂ZXβ)�Â(π̂ZY − π̂ZXβ). 

An empirical example is given in Angrist (1990, 

“Lifetime Earnings and the Vietnam Era Draft 

Lottery: Evidence from Social Security Admin­

istrative Records”). There Yi is earnings, Di 

indicates whether they served in the military, 

and zi indicates whether their birthday was af­

ter a certain date. In that application, π̂ZX 

comes from military records and π̂ZY from so­

cial security data. 

Cite as: Victor Chernozhukov, course materials for 14.385 Nonlinear Econometric Analysis, Fall 2007. MIT OpenCourseWare 
(http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 



Extremum Estimator 

Notation: 

θ : p × 1 parameter vector of interest 

Q̂(θ) : r × 1 function of data and parameters. 

Data Assumption: Here we assume that 

sup Q̂(θ) − Q(θ) →p 0, 
θ∈Θ 

| | 

and 

θ0 minimizes Q(θ). 

Here the data enters only through the function 

Q̂(θ). 

Extremum Estimator: The estimator is ob­

tained as follows: 

θ̂ minimizes Q̂(θ).
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The idea is that Q̂(θ) is close to a function 
that is minimized at θ0, so minimizer of Q̂(θ) 
should be close to θ0. 

Special Cases: 

MLE : Q̂(θ) = −En ln f (zi, θ), 

M : Q̂(θ) = Enm(zi, θ), 

GMM	 : Q̂(θ) = ĝ(θ)�Âĝ(θ), 

MD : Q(θ) = π, θ)�Ah(ˆˆ h(ˆ ˆ π, θ). 

Discussion: The extremum approach pro­
vides one unified approach to the asymptotic 
properties of estimators. The GMM approach 
can also be viewed as a fairly general approach. 
Recent literature on empirical likelihood can 
be viewed as an important refinement of the 
GMM approach. 

Computational considerations often also lean

toward extremum estimators. For good com­

puting, we would like Q̂(θ) to be convex in
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the parameters. An example is quantile re­


gression that constructs a convex M-function


– as asymmetric least absolute deviation – that 

can be easily minimized. In contrast, the GMM 

approach to the quantile problem is basically 

intractable. Computability is extremely im­

portant for applicability. 
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Some remarks on the history of thought: 

1. MLE was pioneered by Laplace and Gauss, 
and Fisher. Cramer gave the first rigorous 
treatment of asymptotic normality. Ibragimov 
and Hasminskii and LeCam’s treatment were 
other milestones in asymptotics for MLE, in­

cluding both regular and non-regular cases. Hu­

ber gave the first rigorous study of M-estimators. 

2. Method of moments was introduced by 
Karl Pearson. Nonlinear IV was introduced by 
Takeshi Amemiya who also derived efficient in­

struments. In statistics, Godambe pioneered 
estimating equations and studied their efficient 
form. GMM, especially with a view towards 
economic time series, was introduced by Lars 
Hansen. Hansen used ergodicity and structure 
of the economic optimizing model to justify 
the weighting matrix and CAN properties. Ex­

tremum approach was developed in depth in 
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Amemiya’s Advanced Econometrics text. Keith 
Knight’s and Charles Geyer’s treatment of ex­
tremum estimators and M-estimators using epi­
convergence appears to be the best current 
treatments of asymptotics. 

3. Hansen and Singleton’s Example 1 is one 
of the paradigms that define econometrics as 
a field. Tobin introduced Type I censored re­
gression models, another paradigm of econo­
metrics, and Amemiya gave the first rigorous 
treatment. Selection models or Type II models 
were developed by Gronau and Heckman. 

4. M-estimators were studied by Huber. Me­
dian regression goes back to Boskovich in 17th 
century and Laplace (1818). Quantile regres­
sion was introduced by Koenker and Bassett 
(1978) and developed fully in an impressive 
body of work led by Roger Koenker. The max­
imum likelihood, least squares, and quantile re­
gression are probably the most prominent rep­
resentatives of M-estimators. 
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