
14.385
Nonlinear Econometrics

Lecture 7.

Theory: Consistency and Accuracy of Bootstrap.

Reference: Horowitz, Bootstrap.
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Consistency of Bootstrap

The idea is that for large n

Gn(t, F̂ ) ≈ G (∞ t, F̂ ) ≈ G (∞ t, F0) ≈ Gn(t, F0).

Consistency relies on asymptotics.

Def. Gn(t, F̂ ) is consistent if under each F0 ∈ F
sup

t
|Gn(t, F̂ )−G ( ) 0∞ t, F0 | →p ,

Example 1. (Inference on Mean)

Statistic and parameter of interest:

Tn =
√

n(X̄ − θ), θ = θ(F0) = EF0
X,

Want to know:

Gn(t, F0) = PF0
(Tn ≤ t)

Bootstrap DGP and Bootstrap “population” parameter:

Fn = empirical df, θ(Fn) = EFn
X = X̄

We create bootstrap samples {Xi
∗} by sampling from the

original sample {Xi} randomly with replacement.

Bootstrap version of Tn:

Tn
∗ =

√
n(X̄∗ − X̄)

Bootstrap gives us:
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Gn(t, Fn) = PFn
(Tn ≤ t).

Bootstrap should work as long as the limit distribution
of Tn varies smoothly in F and if the (triangular) CLT
holds with the same limit for any sequence in F, and
{F̂} ∈ F with probability one.

One formal theorem is as follows (this follows Horowitz):

Theorem (Bickel & Ducharme): Gn(t, F̂ ) is consis-
tent if for each F0 ∈ F: (i) ρ(F̂ , F0) →p 0, (ii) G ( ) is∞ t, F
continuous in t for each F ∈ F, (iii) for any t and Fn

such that
∈ F

ρ(Fn, F0) → 0, we have

|Gn(t, Fn)−G (∞ t, F0)| → 0,

for each t, where ρ is some metric.

The result follows from the extended continuous map-
ping theorem.

Proof: Clearly, ρ(F̂ , F0) →p 0 implies

|Gn(t, Fn)−G (∞ t, F0)| →p 0.

Next we apply Polya’s Lemma: Pointwise convergence
of a sequence of monotone functions to a bounded
monotone continuous function implies that the sequence
converges to this function uniformly. Thus, supt |Gn(t, Fn)

(
−

G∞ t, F0)| →p 0. ¤

Remark: In way, the theorem is nearly at tautology, but
it really helps organize thinking.
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Remark∗: Bickel and Friedman formally verify the con-
ditions in Example 1 by checking the conditions of the
above theorem using Kantarovich-Wasserstein-Mallows
metric

ρ(P, Q) = inf
X,Y
{E‖Y −X‖2, Y ∼ P, X ∼ Q}.

Theoretical Exercise. Supply the details of the proof. Hint: If

you let Xn = Φ−1(FYn(Yn)) =d N(0,1), where FYn is the distribution

function of Yn and Φ−1 is the quantile function of the standard

normal. Then Yn =
√ 1n(X̄ − µ)/σ = FY

− (Φ(Xn))
n

≈ Xn + o(1),

conditional on a set S that contains Xn with a probability close to

one, which holds by the central limit theorem.

The following is a nice theorem due to Mammen:

Theorem (Mammen): Let {Xi, i ≤ n} be an iid sample
from population. For a sequence of normalizing con-
stants tn and σn define:

ḡn = 1 (g
n

∑
n(Xi), Tn = ḡn−tn),

σn

ḡn
∗ = 1 (g

n

∑
n(Xi

∗), Tn
∗ = ḡn

∗−ḡn).
σn

Nonparametric bootstrap is consistent if and only if Tn

is asymptotically normal.

Proof: The sufficiency follows from Bickel and Fried-
man. For the necessity see Mammen’s article. ¤
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Example 2. (Inference in Regression)

Option (a) Bootstrap. (Asymptotically pivotal op-
tion (b) below is more accurate)

Data Xi = (Yi, Wi), where Wi is regressor, and Yi depen-
dent variable. Model Yi = Wi

′β + εi.

Parameter of interest: θ(F0) = βj.

Statistic of interest: Tn =
√

n(β̂ − βj).

Want to know Gn(t, F0) = PF0
(Tn ≤ t).

Fn = empirical df.

We create bootstrap samples {Xi
∗} by sampling from the

original sample {Xi} randomly with replacement.

Under bootstrap DGP the “population” parameter is
θ(Fn) = β̂j.

For each bootstrap sample we compute Tn
∗ =

√
n(β̂∗ β̂j)

(bootstrap realization of
−

Tn).

Bootstrap gives us Gn(t, Fn) = PFn
(Tn ≤ t).
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Example 2. (Inference in Regression)

Option (b) This option bootstraps asymptotically
pivotal statistic.

Data Xi = (Yi, Wi), where Wi is regressor, and Yi depen-
dent variable. Model Yi = Wi

′β + εi.

Parameter of interest: θ(F0) = βj, the j-th component
of β.

Statistic of interest:

Tn =
√

n(β̂j − βj)/s.e.(β̂j).

Want to know exact law Gn(t, F0) = PF0
(Tn ≤ t).

Fn = empirical df.

We create bootstrap samples {Xi
∗

riginal
} by sampling from the

o sample {Xi} randomly with replacement.

Under bootstrap DGP the “population” parameter is
θ(Fn) = β̂j.

For each bootstrap sample we compute

Tn
∗ =

√
n(β̂j

∗ − β̂j)/s.e.∗(β̂j)

where s.e.∗(β̂j) denotes the recomputed value of the
standard error using bootstrap samples.

Bootstrap gives us Gn(t, Fn) = PFn
(Tn ≤ t).

Option (b) is more accurate than the “natural”
option (a).
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Accuracy of Bootstrap.

This example has an interesting feature:

Tn →d N(0,1),

that is Gn(t, F0) ≈ Φ(t) in large samples, and the ex-
act law is almost independent of DGP F0. Therefore,
Gn(t, F̂ ) ≈ Φ(t) too.

Def. A statistic Tn is called asymptotically pivotal
relative to a class of DGPs F, if its limit law does not
depend on DGP F :

G (∞ t, F ) = G (∞ t)

for all F ∈ F.

Under asymptotic pivotality, the exact law is not very
sensitive to the underlying DGP. Replacement of true
DGP F0 with F̂ results in a good approximation of the
exact law.

“Theorem”: The approximation error of bootstrap ap-
plied to asymptotically pivotal statistic is smaller than
the approximation error of bootstrap applied to an asymp-
totically non-pivotal statistic.

“Proof”: A simple example is the case of the exact
pivotality, where the bootstrap makes no error at all.
For mean-like stat this claim as well as regularity condi-
tions for it are made formal by appealing to Edgeworth
expansion. See Horowitz for more details. ¤.
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Theoretical Exercise. Make the claim formal for the case of

bootstrapping the sample mean. Explain first the idea of the Edge-

worth expansion: which is to first expand the characteristic function

around the normal and then use the Fourier inversion to get the

approximation to the distribution function. Then explain why in

the case of asymptotically pivotal satistic (t-stat) the bootstrap

makes smaller error than in the case of asymptotically non-pivotal

statistic (sample mean).

The case is very close to the exact pivotality, which we
used to tabulate the exact law without any approxima-
tion error.
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Failure of Nonparametric Bootstrap:

I. When normal CLT does not apply for average-
like statistics

Recall from 381, this happens e.g. when Xi
′s have infi-

nite variance. Under such conditions X̄ is approximately
distributed as a stable Pareto-Levy variable.

If you don’t recall 381, the idea is conveyed by the fol-
lowing example:

Example: Cauchy Average If Xi ∼ Cauchy, then
X̄ ∼ Cauchy, since sum of i.i.d. Cauchy is Cauchy.
Therefore, bootstrap fails by Mammen’s theorem.

Cauchy variable has no mean and has infinite variance.
The behavior of the Cauchy mean is entirely driven by
the extreme order statistics, whose behavior the non-
parametric bootstrap fails to approximate entirely. In-
deed, in any finite sample, the nonparametric bootstrap
DGP has finite support and all finite moments, but the
true DGP has no moments. Thus, true DGP and boot-
strap DGP will predict very different behaviors for the
sample mean.

Practical Relevance: Firm sizes, city sizes Xi have Cauchy-
like tails (Zipf’s law).

Foreign Exchange rates seem to have Cauchy-like tails.
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II. When limit distribution G (∞ t, F ) is not continuous
with respect to perturbations in F

If so, G (t, F̂ ) can deviate a great deal from∞ G (∞ t, F0).

Case I is actually a special case of this one.

Example: Distribution of Maximum of a Sample.

Xi ∼ U(0, θ0) i.i.d.,

Tn = n(θn − θ0), θn = max{X1, ..., Xn},
Fn = EDF (nonparametric bootstrap)

Tn
∗ = n(θn

∗ − θn), θn = max{X1
∗, ..., Xn

∗},
Then one can show that

Tn →d Exponential = lnU(0,1)

but

Tn
∗ →d Something Else,

since

PFn
[Tn

∗ = 0] = 1−PFn
[Tn

∗ > 0] = 1− (1− 1/n)n → 1− e−1.

The nonparametric bootstrap tells us that there is a
pointmass at 0, but the limit exponential variable we
found above has no point masses.

Therefore nonparamatric bootstrap is inconsistent.

It is easy to show that the parametric bootstrap is con-
sistent in this case, as well as in the case of Cauchy.
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More Substantial Examples of Nonparametric Bootstrap
Failure:

1. Extreme and Near-Extreme Quantile Regression

2. Non-regular Maximum Likelihood for Auction, Price
Search Models, and Frontier Models.

In these case, one can use either (variants of) parametric
bootstrap or subsampling.
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Subsampling.

Idea: draw subsamples of size m < n from the original
data

(i) with replacement = m out of n bootstrap

(ii) without replacement = subsampling bootstrap.

Subsampling works when nonparametric bootstrap does
not.

Typically less accurate than bootstrap, when the latter
works.

For the precise details of the algorithms, see:

Reference: Horowitz, Bootstrap.

Reference: Romano, Politis, Wolf, Subsampling.

8

Cite as: Victor Chernozhukov, course materials for 14.385 Nonlinear Econometric Analysis, Fall 2007. MIT OpenCourseWare
(http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].



The m Out of n Bootstrap:

The estimate of Gn(t, F0) is Gm(t, Fn).

Consistency arguments can be made similarly to the n
out of n case.

However, drawing fewer observations often fixes cases
of failure via a smoothing mechanism:

Example: Distribution of a Maximum. Recall our
extremes example, then

PFn
[Tm

∗ = 0] = 1− (1− 1/n)m ≈ 1− e−m/n ≈ 0,

if m/n → 0. Thus the point-mass problem goes away.

The Subsampling Bootstrap:

Provided the number of subsamples is large, i.e. b/n
0, then the estimate of Gn(t, F0) is given by

→

Gm(t, F0) + op(1),

because the subsamples of size m are drawn from the
true DGP F0. As m →∞,

Gm(t, F0) → G (∞ t, F0).

Theoretical Exercise. Supply details of the proof of subsampling
consistency for the case of the sample mean. See Horowitz for an
outline or Politis and Romano article.

Reference. Politis, Dimitris N.; Romano, Joseph P. Large sample

confidence regions based on subsamples under minimal assump-

tions. Ann. Statist. 22 (1994), no. 4, 2031–2050.
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Empirical Example 1 (Bootstrap):

Bertrand, Duflo, Mullainathan, “Should we trust difference-
in-difference estimators?”

Document success of bootstrap for estimation of policy
effects. Works better than robust standard errors.

Xi is a vector of data on individual i.

Bootstrap “resamples” individuals to form new samples.

Statistic of interest is

Tn = (β̂j − β ˆj)/s.e.(βj).

Bootstrap statistic

Tn
∗ = (β̂ ˆ ˆ

j
∗ − βj)/s.e∗(βj).

is recomputed for each bootstrap sample.

Then we use quantiles of simulated distribution of Tn
∗ as

critical values for tests or use them to form confidence
regions.

Why successful?
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Empirical Example 2 (Subsampling)

Chernozhukov, V. “Inference for Extremal Conditional
Quantiles, with an Application to Birthweights.”
(www.mit.edu/~vchern)

Parameter of interest θ: very low percentiles of birth-
weights conditional on quality of prenatal care, smoking,
and other characteristics.

A sample of black mothers.

The estimate θ̂ is based on extremal regression quan-
tiles.

Limit distribution: for some An

An(θ̂ − θ) →d M,

where M is a functional of a marked Poisson process.

Using (a form of) subsampling on the statistic n(θ̂
θ) leads to straightforward inference that requires

A
no
−

knowledge of M.
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