
Lecture 12. Set Estimation 
and Inference in Moment 
Condition Models 
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•	 The notes cover the paper “Estimation and 

Inference on Parameter Sets in Econometric 

Models” by Chernozhukov, Hong, and Tamer 

(Econometrica, 2007). 

•	 Consider a population criterion function 

Q(θ) � 0. An economic model θ ∈ Θ ⊂ R
k 

passes empirical restrictions if Q(θ) = 0. 

Denote the set of parameters that pass these 

restrictions as ΘI . That is, 

ΘI = {θ ∈ Θ : Q(θ) = 0} = arg min Q(θ). 
θ∈Θ 

ΘI will be called the identified set. 

•	 Q(θ) typically embodies moment restrictions 

arising from economic theory and other 

considerations. In particular, moment 

inequality and equality restrictions lead to 

objective functions Q(θ) of GMM type. 

Concrete examples follow. 
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•	 Our goal is to provide set estimators Θ� I 

based on Qn(θ) that are 

1) consistent, 

2) converge to ΘI at the fastest rate, 

3) have confidence interval property, and 

4) computationally tractable. 

•	 These results extend the classical theory for 

the case when ΘI is a singleton. 
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Model I: Moment Inequality Problems 

The moment restrictions are computed with 

respect to the probability law P of the data and 

take the form 

EP [mi(θ)] � 0, (1) 

where mi(θ) = m(θ, wi) is a vector of moment 

functions parameterized by θ and determined by 

a vector of real random variables wi. Therefore 

the set of parameters θ that pass the testable 

restrictions is given by 

ΘI = {θ ∈ Θ : EP [mi(θ)] � 0}. 

It is interesting to comment on the structure of 

the set ΘI in this model. When the moment 

functions are linear in parameters, the set ΘI is 

given by an intersection of linear half-spaces and 

could be a triangle, trapezoid, or a polyhedron, as 

in Examples 1 and 2 introduced below. When 

moment functions are non-linear, the set ΘI is 

given by an intersection of nonlinear half-spaces 
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which boundaries are defined by nonlinear 

manifolds. 

The set ΘI can be characterized as the set of 

minimizers of the criterion function 

Q(θ) := �EP [mi(θ)]+W 1/2(θ)� 2 , a (2) 

where W (θ) is a continuous and positive definite 

for each θ ∈ Θ. Therefore, the inference on ΘI 

may be based on the empirical analog of Q: 

Qn(θ) := �En[mi(θ)]+
� Wn 

1/2(θ)� 2 , 

En[mi(θ)] = 
1 

n�
mi(θ), 

(3) 

n 
i=1 

where Wn(θ) is a uniformly consistent estimate of 

W (θ). In applications Wn(θ) is often taken to be 

an identity matrix or chosen to weight the 

individual empirical moments by estimates of 

inverses of their individual variances. 

The modified objective function


(θ) = inf (θ�)Q�n Qn(θ) −
θ�∈Θ 

Qn
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�

is another useful analog of Q(θ) for inference. 

This analog mimics quasi-likelihood ratio statistic 

more closely, and thus improves power, when 

infθ�∈Θ Qn(θ�) = 0 in finite samples. 
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Example 1: Interval Data. 

The first simplest example is motivated by 

missing data problems, where Y is the unobserved 

real random variable bracketed below by Y1 and 

above by Y2. 

Let {(Y1i, Y2i), i = 1, ..., n}, be an i.i.d. sequence 

of real random variables with law P on Rd . The 

parameter of interest θ = EP [Y ] is known to 

satisfy the restriction 

EP [Y1] � θ � EP [Y2]. 

The identified set is therefore given by an interval


ΘI = {θ : EP [Y1] � θ � EP [Y2]}. 

This example falls in the moment-inequality 

framework with moment function 

mi(θ) = (Y1i − θ, θ − Y2i)
� . 

Therefore, set ΘI can be characterized as the set 
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of minimizers of 

Q(θ) = [mi(θ)]� 2 = (EP [Y1i]−θ)2 +(EP [Y2i]−θ)2 ,�En + + −

with the sample analog 

Qn(θ) = (En[Y1i] − θ)2 + (En[Y2i] − θ)2 .+ −
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Example 2. Interval Outcomes in 

Regression Models. A regression generalization 

of the previous basic example is immediate. 

Suppose a regressor vector Xi is available, and the 

conditional mean of unobserved Yi is modelled 

using linear function Xi
�θ. The parameters of this 

function can be bounded using inequality 

EP [Y1i|Xi] � Xi
�θ � EP [Y2i|Xi]. 

These conditional restrictions can be converted to 

unconditional ones by considering inequalities 

EP [Y1iZi] � θ�EP [XiZi] � EP [Y2iZi], 

where Zi is a vector of positive transformations of 

Xi, for instance, Zi = {1(Xi ∈ Xj), j = 1, ..., J}, 
for a suitable collection of regions Xj . The 

identified set is therefore given by an intersection 

of linear half-spaces in Rd . 

This examples also falls in the moment inequality 

framework, with moment function given by 

mi(θ) = ((Y1i − θ�Xi)Zi
� ,−(Y2i − θ�Xi)Zi

�)� . 
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In auction analysis, the bracketing of the latent 

response – bidder’s valuation – by functions of 

observed bids is very natural and occurs in a 

variety of settings, cf. Haile and Tamer (2003). 

Analogous situations occur in income surveys. 
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Example 3. Optimal Choice of Economic 

Agents and Game Interactions 

Another application of (1) is in the optimal choice 

behavior of firms and economic agents. Suppose 

that a firm can make two choices Di = 0 or 

Di = 1. Suppose that the profit of the firm from 

making choice Di is given by π (Wi, Di, θ) + Ui, 

where Ui is a disturbance such that E[Ui Xi] = 0, |
for Xi representing information available to make 

the decision, and Wi are various determinants of 

the firm’s profit, some of which may be included 

in Xi. For example, Wi may include the actions 

of other firms that affect the firm’s profit. From a 

revealed preference principle, the fact that the 

firm chooses Di necessarily implies that 

E[π (Wi, Di, θ) |Xi] � E[π (Wi, 1 − Di, θ) |Xi]. 

Therefore, we can take the moment condition in


(1) to be 

mi (θ) = (π (Wi, 1 − Di, θ) − π (Wi, Di, θ))Zi � 0, 

where Zi is the set of positive instrumental 
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variables defined as positive transformations of 

Xi, for instance, defined as in the previous 

example. 

This simple example highlights the structure of 

empirically testable restrictions arising from the 

optimizing behavior of firms and economic agents. 

These testable restrictions are given in the form 

of moment inequality conditions. It could be 

noted that this simple example also allows for 

game-theoretic interactions among economic 

agents. 

The moment inequality conditions of the above 

kind are ubiquitous and are known to arise in 

(more realistic) dynamic settings. See Ciliberto 

and Tamer (2003) and Ryan (2005) for more 

details. 

Similar principles are used in Blundell, Browning,
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and Crawford (2005) to analyze bounds on 

demand functions. Related ideas also appear in 

an area of stochastic revealed preference 

analysis, e.g. see Varian (1984) and McFadden 

(2005). 
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Example 4. Based on Hansen, Heaton, and 

Luttmer (1995): 

The price vector Pt of securities with payoff St 

satisfy 

Pt � E[Qt(θ)St|Xt], 

when the short-sale constraints are present, where 

Qt(θ) is the pricing kernel. An asset pricing 

model θ provides a pricing kernel Qt(θ). The 

model can be tested using moment inequality 

conditions with moment function 

mt(θ) := −(Pt − Qt(θ)St)Zt, 

for Zt equal to a collection of positive transforms 

of Xt. The set of models θ that provide adequate 

pricing kernels are given by 

ΘI = {θ ∈ Θ : EP [mt(θ)] � 0}. 

The above illustrates how market frictions 

introduce moment inequalities in the asset pricing 

framework. 

Hansen, Heaton, and Luttmer (1995) actually use
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these equations as a starting point for a 

derivation of a region of feasible (possibly 

conditional) means and variances for the pricing 

kernel, subject to volatility and specification error 

bounds. They also provide a consistent estimator 

but don’t consider inference. The results of this 

paper allow to construct both estimators and 

confidence regions for these regions. 
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Model II: Moment Equalities 

Moment equalities are more traditional in 

empirical analysis. The economic models, indexed 

by θ, are assumed to satisfy the set of testable 

restrictions given by moment equalities: 

EP [mi(θ)] = 0, that is ΘI = {θ ∈ Θ : EP [mi(θ)] = 0}. 
(4) 

When the moment functions are linear in 

parameters, the set ΘI is either a point or a 

hyperplane intersected with parameter space Θ. 

When moment functions are non-linear, the set 

ΘI is typically a manifold, which also includes the 

case of isolated points (a zero-dimensional 

manifold). 

The set ΘI can be characterized as the set of 

minimizers of the conventional generalized 

method of moments function 

Q(θ) := �EP [mi(θ)]
�W 1/2(θ)� 2 , (5) 

where W (θ) is a continuous and positive-definite 
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�


matrix for each θ ∈ Θ. The inference on ΘI may 

be based on the conventional 

generalized-method-of-moments function 

Qn(θ) := �En[mi(θ)]
�Wn 

1/2(θ)� 2 , 
n� 

i=1 

(6)
1

En[mi(θ)]
 mi(θ),
= 

n 

where Wn(θ) is a uniformly consistent estimate of 

W (θ). In applications, Wn(θ) can be an identity 

matrix or an estimate of the inverse of the 

asymptotic covariance matrix of empirical 

moment functions. 

In many situations, we can also use the modified 

objective function for inference: 

Qn

This modification is useful in cases where Qn does 

not attain value 0 in finite samples. In such cases, 

using the modified objective function typically 

leads to power improvements, as is well-known in 

point-identified cases. 
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(θ) = Qn(θ) − inf Qn
θ�∈Θ 

(θ�).




Example 5. Structural Simultaneous 

Equations. Consider the structural instrumental 

variable estimation of returns to schooling. 

Suppose that we are interested in the following 

example where potential income Y is related to 

education E through a flexible, quadratic 

functional form, 

Y = θ0 + θ1E + θ2E
2 + � = X �θ + �, 

for 

θ = (θ0, θ1, θ2) and X = (1, E, E2)� . 

Although parsimonious, this simple model is not 

point identified in the presence of the standard 

quarter-of-birth instrument suggested in Angrist 

and Krueger (1992).a In the absence of point 

identification, all of the parameter values θ 

consistent with the instrumental orthogonality 
aThe instrument is the indicator of the first quarter of 

birth. Sometimes the indicators of other quarters of birth 

are used as instruments. However, these instruments are not 

correlated with education (correlation is extremely small) 

and thus bring no additional identification information. 
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restriction E[(Y − θ�X)Z] = 0 are of interest for 

purposes of economic analysis. Phillips (1989) 

develops a number of related examples. 

Similar partial identification problems arise in 

nonlinear moment and instrumental variables 

problems, see e.g. Demidenko (2000) and 

Chernozhukov and Hansen (2005). In 

Chernozhukov and Hansen (2005), the parameters 

θ of the structural quantile functions for returns 

to schooling satisfy the restrictions: 

E[(τ − 1(Y � X �θ))Z] = 0, 

where τ ∈ (0, 1) is the quantile of interest. This is 

an example of a nonlinear instrumental variable 

model, where the identification region, in the 

absence of point identification, would generally be 

given by a nonlinear manifold. Chernozhukov and 

Hansen (2004) and Chernozhukov, Hansen, and 

Jansson (2005) analyze an empirical 

returns-to-schooling example and a structural 

demand      
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�

Estimation 

A lower contour set Cn(c) of level c of the sample 

criterion function Qn is defined as 

Cn(c) := {θ : Qn(θ) � c/n}. 

The estimator Θ� I will take the form: 

Θ� I = Cn(�c). 

For estimation purposes, we will need that the 

level c = c, which could be data-dependent, 

diverges very slowly to infinity; for concreteness, 

we could set �c = ln n. Divergence would generally 

be needed to cover general cases. 

In Examples like 1-3 no growth condition would 

typically be needed, and for estimation purposes – 

though not for inference purposes – one could 

even set �c = 0 or to any other positive constant. 

For example, in Example 1, �c = 0 would give us 

the estimate Cn(0) = [En[Y1], En[Y2]]. 
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� � 

The analysis of the rates of convergence and 

consistency will make use of the Hausdorff 

distance between sets, which is defined as 

dH(A, B) := max sup d(a, B), sup d(b, A) , 
a∈A b∈B 

d(b, A) := inf 
a∈A

�a − b�, 

and dH(A, B) := ∞ if either A or B is empty. 

The general consistency (Theorem 3.1) result 

dH(Cn(�c),ΘI) →p 0, 

follows from mild assumptions on Qn. 

Specifically, we require the uniform convergence 

of the sample function Qn to the limit continuous 

function Q over the compact parameter space Θ, 

where the rate of convergence over set ΘI is 1/n. 

The rate of convergence (Theorems 3.1 and 
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3.2) is: 

dH(Cn(�c),ΘI) = Op(
�

max(�c, 1)/n), 

which is very close to 1/
√

n rate of convergence 

(and is exactly 1/
√

n in many moment inequality 

examples, e.g. Example 1, 2, and 3). 

The assumption required for this is an 

approximately quadratic behavior of Qn(θ) over 

suitable neighborhoods of ΘI . To get the sharp 

rate we need degenerate interior asymptotics – 

Qn must vanish on appropriate contractions of 

the identified set ΘI . 
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Confidence Region for ΘI : 

If we want a confidence region for ΘI , simply set 

CR = Cn(�c) = {θ ∈ Θ : nQn(θ) � �c} 

where �c is an estimate of c(α) – the α-quantile of


Cn = sup nQn(θ) 
θ∈ΘI 

Clearly, event Cn � c(α) is equivalent to 

ΘI ⊂ Cn(c(α)), provided ΘI is compact. Then 

under conditions of Theorem 3.3 

lim inf P (ΘI ⊂ CR) � α. 
n 

The above confidence region is simply the 

inversion of the quasi-likelihood ratio test of the 

null hypothesis that supθ∈ΘI 
Q(θ) = 0. 

Critical value �c can be obtained by 

(a) a generic subsampling method (problem 

independent) applied to a feasible version of 

Cn (with ΘI replaced by an estimate), 
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(b) by simulating the limit distribution (better, 

but problem specific). 

Subsampling is constructed in Theorem 3.4. 

Limit distributions are constructed in Theorem 

4.4 for moment condition problems. 

It should be mentioned that naive (canonical) 

bootstrap does not work for this problem. 
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Confidence Region for θ0: 

Suppose there is a true parameter θ0 and we want 

to construct a confidence region for this 

parameter,a not the confidence region for ΘI . If 

so, simply set 

CR = {θ ∈ Θ : nQn(θ) � �c(θ)}, 

where �c(θ) is an estimate of c(α, θ) – the 

α-quantile of 

Cn(θ) = nQn(θ). 

Then under conditions of Theorem 5.1 

lim P (θ0 ∈ CR) � α. 
n 

The above confidence region is simply the 

inversion of the quasi-likelihood ratio test of the 

null hypothesis that Q(θ) = 0. We simply collect 
aIn economic modelling, it is often hard to make the case 

that there is the true model (parameter), since economic 

models are typically highly simplified constructs that aim 

to explain or fit certain (but not all!) features of the real 

world.         
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We therefore might prefer confidence regions for ΘI .



all values θ where this hypothesis cannot be 

rejected, and you get CR above. 
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Critical value �c(θ) can be obtained by 

(a) a generic subsampling method (problem 

independent), 

(b) by simulating the limit distribution (better, 

but problem specific). 

Limit distributions are constructed for moment


condition problems.


It should be mentioned that naive (canonical)


bootstrap does not work for this problem.
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Illustration with Moment Inequalities. 

Suppose that 

√
n
�
En[mi(θ)] − EP [mi(θ)]

� 
Δ(θ),⇒

where Δ(θ) is a mean zero Gaussian process with


a.s. continuous paths. Then we show that (1) 

Cn(θ) →d C(θ):= �(Δ(θ) + ξ(θ))�W 1/2(θ)�+
2 , 

where ξ(θ) := (ξj(θ), j � J) with 

ξj(θ) = −∞ if EP [mij(θ)] < 0 

and 

ξj(θ) = 0 if EP [mij(θ)] = 0. 

(2) 

Cn →d C = sup C(θ). 
θ∈ΘI 

If the data are i.i.d., we can estimate the 

quantiles of C(θ) and C by simulating the 

distribution of the variables 

Cn
∗(θ) := �(Δn

∗ (θ) + ξ�(θ))�Wn 
1/2(θ)�+

2 ,
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and 
∗	 ∗ C := sup C (θ),
n n

θ∈bΘI 

where ξ�(θ) := (ξ�j(θ), j = 1, ..., J)� with 

ξ�j(θ) := −∞ if En[mij(θ)] � −cj

�
log n/n, 

and 

ξ�j(θ) := 0 if En[mij(θ)] > −cj

�
log n/n, 

for some positive constants cj > 0. We simulate 

Δ∗ 

n(θ) as 

n
−1/2 ∗Δ∗ 

n(θ) := n	
�

[mi(θ)zi ], 
i=1 

and (zi 
∗, i � n) is a n-vector of i.i.d. N(0, 1) 

variables. Similarly, we can simulate Δ∗ 

n(θ) using 

“the” bootstrap. For this purpose, we take 

z ∗ = ki 
∗ − 1 for each i, and (k∗, i � n) is an i	 i 

n-vector of variables following the multinomial 

distribution with success probabilities 1/n, 

defined   
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over n-trials.



Interval Censored Regression: Empirical 

Monte-Carlo 

•	 Y is wages and salaries (complete),


X is education.
• 

Estimate the linear model: • 

Eθ[Y X] = θ0 + θ1X|

When Y is complete, the linear model is 

identified: 
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Figure 1: Point Identified Case: Subsampling vs 

χ2 Ellipses 

Image by MIT OpenCourseWare. 
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Now bracket Y into categories (in thousands): 

[0,5], [5,7.5], [7.5,10], [10,12,5], [12.5,15],


[15,20], [20,25], [25,30], [30,35], [35,40],


[40,50], [50,60], [60,75], [75,100],


[100,150],[150,100000]


Figure 2: ΘI vs Cn(bc.95). n=600, b=150. 

Image by MIT OpenCourseWare. 
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Figure 3: ΘI vs Cn(bc.95). n=10000, 

b=2000. 

Image by MIT OpenCourseWare. 
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