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Examples of Very Big Data

» Congressional record text, in 100 GBs
> Nielsen's scanner data, 5TBs

» Medicare claims data are in 100 TBs
» Facebook 200,000 TBs

» See "Nuts and Bolts of Big Data”, NBER lecture, by
Gentzkow and Shapiro. The non-econometric portion of our
slides draws on theirs.



Map Reduce & Hadoop

The basic idea is that you need to divide work among the cluster
of computers since you can't store and analyze the data on a single
computer.

Simple but powerful algorithm framework. Released by Google
around 2004; Hadoop is an open-source version.

Map-Reduce algorithm has the following steps:

1. Map: processes "chunks’ of data to produce "summaries”

2. Reduce: combines "summaries’ from different chunks to
produce a single output file



Examples

» Count words in docs i. Map: i+ set of (word, count) pairs,
Ci Reduce: Collapse {C;} by summing over count within
word.

> Hospital /. Map: i+~ records H; for patients who are 65+.
Reduce: Append elements of {H;}.



Map-Reduce Functionality

Partitions data across machines

v

Schedules execution across nodes

v

v

Manages communication across machines

Handles errors, machine failure

v



MapReduce: Model
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Amazon Web Services

v

Data centers owned and run by Amazon. You can rent
"virtual computers” minute-by-minute basis

» more than 80% of the cloud computing market
» nearly 3,000 employees

» cost per machine: 0.01 to 4.00 /hour

» Several services in AWS

» S3 (Storage)

» EC2 (Individual Machines)

» Elastic Map Reduce

» distribute the data for Hadoop clusters



Distributed and Recursive Computing of Estimators

We want to compute the least squares estimator

n
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The sample size n is very large and can’t load the data into a
single machine. What could we do if we have a single machine or
many machines?

Use the classical sufficiency ideas to distribute jobs across
machines, spatially or in time.




The OLS Example

> We know that
B =(X'X)"YX'Y).

» Hence we can do everything we want with just:
X'X, XY, n, S,

where Sp is a "small” random sample (Y}, Xj)icj, with sample
size ng, where ng is large, but small enough that the data can
be loaded in the machine.

» We need X’X and X’Y to compute the estimators to
compute the estimator.

> We need Sy to compute robust standard errors and we need
to know n to scale these standard errors appropriately.



The OLS Example Continued

> The terms like X’X and X’Y are sums that can be computed
by distribution of jobs over many machines:

1. Suppose machine j stores sample S; = (Xj, Y,-),-E,j of size n;.

2. Then we can map §; to the sufficient statistics

7= (D XX > xivion)
i€l; i€l;
for each j.

3. We then collect (Tj)j’\i1 and reduce them further to

M
T=) Ti=(X'X,X'Y,n).
j=1



The LASSO Example

The Lasso estimator minimizes
(Y = XBY(Y = XB) + A[WB[l1, ¥ = diag(X'X)
or equivalently
Y'Y = 28'X'Y + B X' XB 4+ A|Vi|1.

Hence in order to compute Lasso and estimate noise level to tune
A we only need to know

Y'X, X'X, n, So.

Computation of sums could be distributed across machines.



The Two Stage Least Squares

The estimator takes the form
(X'PzX)IX'P;Y = (X'2(Z2'2)'2X)" X' 2(Z22) 17 Y.
Thus we only need to know
zZ’z, X'z, Z'Y, n, S

Computation of sums could be distributed across machines.



Digression: Ideas of Sufficiency are Extremely Useful in
Other Contexts

» Motivated by J. Angrist, Lifetime earnings and the Vietnam
era draft lottery: evidence from social security administrative
records, AER, 1990.

» We have a small sample So = (Z;, Yi)ici,, where Z; are
instruments (that also include exogenous covariates) and Y;
are earnings. In ML speak, this is called "labelled data” (they
call Y; labels, how uncool)

> We also have huge (n > ng) samples of unlabeled data (no Y;
recorded) from which we can obtain Z’X, X'X, Z'Z via
distributed computing (if needed).

> We can compute the final 2SLS-like estimator as

n _
n—0~(X’Z(Z’Z) 17/ X)X Z( sz

Can compute standard errors using Sp.
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Exponential Families and Non-Linear Examples

Consider estimation using MLE based upon exponential families.
Here assume data W; ~ fy, where

fo(w) = exp(T(w)'0 + ¢(0)).

Then the MLE maximizes

n

> loghy(Wi) = T(Wi)'0 +¢(6) = T'0 + np(6).
i=1

i=1

The sufficient statistic T can be obtained via distributed
computing. We also need an Sy to obtain standard errors.
Going beyond such quasi-linear examples could be difficult, but
possible.



M- and GMM - Estimation

The ideas could be pushed forward using 1-step or approximate
minimization principles. Here is a very crude form of one possible
approach.

Suppose that § minimizes

n

> m(W;, 0).

i=1

Then given an initial estimator éo computed on Sp we could do
Newton iterations to approximate 6:

n -1 n
Oj1=0;— (Z Vﬁfﬂ(‘”ﬁ@')) > Vom(W;, 0).

i=1 i=1

Each iteration involves sufficient statistics

ngm Wi, ), Zng (W;, ;)
i=1 i=1

which can obtained via distributed computing.



Conclusions

> We discussed the large p case, which is difficult. Approximate
sparsity was used as a generalization of the usual parsimonius
approach used in empirical work.

> A sea of opportunities for exciting empirical and theoretical
work.

> We discussed the large n case, which is less difficult. Here the
key is the distributed computing. Also big n samples often
come in "unlabeled” form, so you need to be creative in order
to make good use of them.

> This is an ocean of opportunities.
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