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Part 1: Expectations and their properties

One variable

Scalar random variable x:

Discrete x:  E[x] = ZzPr(x =z)

Continuous x:  E[x] = /zfx(z)dz

Variance: Var(x) = E[(x — E[x])?]

Random or fixed?



Part 1: Expectations and their properties

Two variables

Scalar random variables x and y:

Discrete y:  E[y|x] = ZzPr(y = z|x)

Continuous y:  Ely|x] = /zfy‘x(z)dz

Covariance: Cov(x,y) = E[(x— E[x])(y — E[y])]
Random or fixed?
e x and y are uncorrelated when Cov(x,y) =0

e y is mean-independent of x when E[y|x] = E[y]
Which is stronger?



Part 1: Expectations and their properties

Two useful properties

o Linearity: for fixed a,b,c, and d
Ela+ bx] = a+ bE[x]
= Cov(a+ bx,c+dy) = bdCov(x,y)

@ The Law of lterated Expectations:
E[E[y|x]] = Ely]

(Sloppy) proof of LIE in continuous case:

E[E[y\x]]z/(/zfyx(z\w)dz> fo(w)dw

:/z/fxy(w,z)dwdz
:/zfy(z)dz

= E[y]
e



Linearity and LIEing

@ Mean independence implies uncorrelatedness:

El(x— EIX)(y — ElyD] = E[E[(x — El<(y — ED)IX]]
= E[(x— El)(Ely|x] - ElYD]
= E[(x—E[x])-0]
=0

O
@ Covariance with mean-zero r.v.s is the expectation of their product:

E[(x— E[x])(y — Ely])] = E[xy — E[x]y —xE[y] + E[x]E[y]]
= E[xy] — E[x]E[y] — E[x]E[y] + E[X] E[]
= E[xy] — E[x]E]y]
= E[xy], if either E[x] = 0Oor E[y] =0

e
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Part 2: Regressions, large and small

Bivariate regression
Scalar random variables x; and y;:

(e, p) = argmin E[(y; — a - bx)’]

FOC: —2E[(y; —a— Bx;)] =0

—2E[(yi — o —Bx;)xi] =0
or
o = Efy;] - BE[xi]
BE[x?] = Elyixi] — ¢ E[x]
Substituting:
BE[?] = Elyixi] — E[yilElx] + BE[x]?

p — Elyixil = ElilElx] _ Cov(yi.xi)
E[x?] — E[x]? Var(x;)




Part 2: Regressions, large and small

Multivariate regression

Scalar random variable y; and k x 1 random vector x;:
B = argmin E[(yi ~ x/b)’]
FOC: —2E[x;(y; —x/B)] =0

(A useful matrix-"metrics resource: The Matrix Cookbook)

B = Elxix{] " Elxiyi]

How do we reconcile this with the last slide? (Where did a go? What
about Cov() and Var()7?)


http://www.mit.edu/~xyq/teaching/resources/matrix_cookbook.pdf

Partialling out

Scalar, mean-zero random variables y;, x1;, and xo;:

(B,y)=arg Ticn El(y; — bxai — cx2i)?]

FOC,: — 2E[XQ,-(y,- — bxij— yxei)] =0

Plug y(b) back in (sometimes called “concentrating out” 7):

. X . 2
p=argminE [(y,- b E [X2’(Ey['x ]b 1’)]in>

sy | (= ) o (- gy

A bivariate regression! But of what on what?

)]



Partialling out (cont.)

@ Special case of the Frisch-Waugh (sometimes -Lovell) theorem: If
xi = [x{;,%5;]', X1; is the residual (vector) from regressing (each
component of) x;; on xp;, and ¥; is the residual from regressing y; on
x»;, then all three are equivalent:

@ The component 3; of B =[B;,B5]" from regressing y; on x;

Q [}1 from regressing y; on X;
© p: from regressing y; on X;

o Partialling out xo; from y; is unnecessary! Why? Back to our example:
Yi = Bxii+yxite
Vi=BXité
yi=BXi+&+yi—yi

. Elxiyi] >
yi = BXii+ <el — X
E[X22i]

Why must the last line be a regression (and not just an equation)? 1



Part 2: Regressions, large and small

From population to sample

@ Regression is a feature of data: just like expectation, correlation, etc.
@ It's a function of population second moments: so easy to estimate!

B = Eulxix] L Enlxiyi]

@ A more matrix-y way to write [§:
1 1
-1
En[xixi] " Enlxiyi] = (n ;XIX:{> (n ;Xiyi>
= (X'X)IX'Y

where

/
X1 »n

Xn Yn



Part 2: Regressions, large and small

Regression subtlety

e f is a feature of data. We know what it is and we know that it

(probably) exists, given any y; and x;.
@ We also how to estimate it; we know that (probably) 5B (why?)

= “given some innocuous technical conditions”)

(where “probably”

o ...ok...but then.... what's all the fuss about?

@ Some common examples of fuss: “endogeneity,” “simultaneity,”
“omitted variable bias,” “selection bias,” “measurement error,” “division
bias,” etc. etc. etc.

The fuss.


https://www.youtube.com/watch?v=7S94ohyErSw

Part 3: Controls: good and bad
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Part 3: Controls: good and bad

You can't always get what you want

@ regyx is always going to give you a [§ estimating the f satisfying
Elxi(yi—xiB)] =0
But what if this isn't what you want? (When might you want it?)

Ex: suppose we want 8 from y; = a+ Bx; + ya; + €, where we know
Eleilxi,ai] =0

o We regy x (maybe throw on a ,r).

o What do we get? What does 8 plim to? Could it be 37

@ Obvious solution: just control for a;. But why stop there?



Part 3: Controls: good and bad

Bad controls

e Goal: add right controls so that the regression B you get is the 8 you
want (i.e. approximates the CEF you want)

e Ex: We randomly assign schooling s; € {0,1}. Want the causal effect
of schooling on income y; (a causal CEF)

o Also measure race b; € {0,1} and post-schooling occupation x; € {0,1}.
o What regression should we run?

o Natural choice: B satisfying E[s;(yi —a — Bs;)] =0

o Another choice: B satisfying E[s;(y; —a — Bs; — yb;)] = 0. Better?
o How about S satisfying E[s;(y; — ot — Bs; — 0x;)] =07



Part 3: Controls: good and bad

Controlling composition

e Potential outcomes: {yp;,y i}. Observe y; = yoi + (v i — yoi)si
o Bivariate regression:

Elyilsi=1] — Elyi|si = 0]

= Elyoi + (v i — yoi)silsi = 1] — E[yoi + (v i — yoi)silsi = 0]
= Elyoi + (v i — yoi)|si = 1] — E[yoilsi = 0]

= Elyii —yoilsi = 1]+ (Elyoilsi = 1] = Elyoilsi = 0])

= Elyii — yoi] (why?)
——

Average treatment effect

@ Recover the CEF, and the CEF is causal.



Part 3: Controls: good and bad

Controlling composition (cont.)

e Potential occupations: {xp;,x j}. Observe x; = xp; + (x j — X0i)Si-
@ Suppose three types T;:
Q Always-zeros (T; = AZ): x0; =0, x1; =0
@ Always-ones (T; = AO): xp;=1, x4, =1
© Switchers (T; =SW): x0; =0, xq; =1
e f3 satisfying E[si(y; — a — Bs; — 6x;)] = 0 will be a weighted average of

Q fo satisfying E[si(y; — oo — Posi)|xi = 0] =0
@ P satisfying E[si(y; —oq — Pisi)|xi=1] =0

@ Why? Think fixed-effects, or work through Frisch-Waugh algebra



Part 3: Controls: good and bad

Controlling composition (cont.)

e B (similar for By):

E[yi|5f - 17Xi - 1]_E[y,|5, :07Xi = 1]
= Elyoi +(y i —y0i)|si = 1,x; = 1] — E[yi| T; = AO]
= Elyi—ywilTi=A0OV(T;=SWAs;=1)]

Weighted avg. of type-specific treatment effects
+ Elyoi| Ti = AOV (T; = SW As; = 1)] — Eyoi| T; = AO]

Bias (no causal interpretation)

@ Recover the CEF (why?), but it's not a CEF we want (not causal)
@ When would this CEF be causal?
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