14.387 Recitation 2 Probits, Logits, and 2SLS

Peter Hull

Fall 2014

Part 1: Probits, Logits, Tobits, and other Nonlinear CEFs

Going Latent (in Binary): Probits and Logits

Scalar bernoulli y_i , vector x_i . Assume

$$y_i^* = x_i'\beta + v_i^*$$
$$y_i = \mathbf{1}\{y_i^* \ge 0\}$$

- y_i^* and v_i^* : latent (unobserved) random variables
- Whats the CEF $(E[y_i|x_i])$?
- Depends on the (conditional) CDF (of v_i^*):

$$E[y_{i}|x_{i}] = P(y_{i}^{*} \ge 0|x_{i})$$

$$= P(v_{i}^{*} \ge -x_{i}'\beta|x_{i})$$

$$= 1 - F_{v^{*}}(-x_{i}'\beta)$$

$$= F_{v^{*}}(x_{i}'\beta)$$

- Last line follows by CDF symmetry (usually assumed)
- Probit $F_{v^*}() = ?$ Logit $F_{v^*}() = ?$ Must the CEF actually be nonlinear? 3

Nonlinear Estimation

Two ways (at least) that β is (probably) identified (where "probably" \equiv "given some innocuous technical conditions")

Maximum Likelihood (MLE):

$$\begin{split} \beta^{MLE} &= \arg\max_{\beta} \prod_{i} f_{y|x}(y_i|x_i,\beta) \\ &= \arg\max_{\beta} \prod_{i} F_{v^*}(x_i'\beta)^{y_i} (1 - F_{v^*}(x_i'\beta))^{1-y_i} \end{split}$$

since
$$P(y_i = 1 | x_i, \beta) = F_{v^*}(x_i'\beta)$$
 and $P(y_i = 0 | x_i, \beta) = 1 - F_{v^*}(x_i'\beta)$

Nonlinear Least Squares (NLS)

$$\beta^{NLS} = \arg\min_{\beta} E\left[(y_i - F_{v^*}(x_i'\beta))^2 \right]$$

since $E[y_i|x_i] = F_{v^*}(x_i'\beta) \implies y_i = F_{v^*}(x_i'\beta) + \varepsilon_i$ with

$$E[\varepsilon_i] = E[y_i - E[y_i|x_i]] = 0$$

As with OLS, minimize expected squared prediction error, $E[\varepsilon_i^2]$

Maximum Likelihood

$$\begin{split} \beta^{\mathit{MLE}} &= \arg\max_{\beta} \prod_{i} F_{v^*} (x_i' \beta)^{y_i} (1 - F_{v^*} (x_i' \beta))^{1 - y_i} \\ &= \arg\max_{\beta} \sum_{i} y_i \ln(F_{v^*} (x_i' \beta)) + (1 - y_i) \ln(1 - F_{v^*} (x_i' \beta)) \end{split}$$

F.O.C.:

$$0 = \sum_{i} y_{i} \frac{f_{v^{*}}(x_{i}'\beta^{MLE})}{F_{v^{*}}(x_{i}'\beta^{MLE})} x_{i} - (1 - y_{i}) \frac{f_{v^{*}}(x_{i}'\beta^{MLE})}{1 - F_{v^{*}}(x_{i}'\beta^{MLE})} x_{i}$$

$$= \sum_{i} \left(\frac{y_{i}}{F_{v^{*}}(x_{i}'\beta^{MLE})} - \frac{(1 - y_{i})}{1 - F_{v^{*}}(x_{i}'\beta^{MLE})} \right) f_{v^{*}}(x_{i}'\beta^{MLE}) x_{i}$$

$$= \sum_{i} \frac{(y_{i} - F_{v^{*}}(x_{i}'\beta^{MLE})) f_{v^{*}}(x_{i}'\beta^{MLE}) x_{i}}{F_{v^{*}}(x_{i}'\beta^{MLE}) (1 - F_{v^{*}}(x_{i}'\beta^{MLE}))}$$

Plug-in estimator $\widehat{\beta}^{MLE}$ solves this in the sample

Nonlinear Least Squares

$$eta^{\mathit{NLS}} = rg\min_{eta} E\left[(y_i - F_{v^*}(x_i'eta))^2
ight]$$

F.O.C. (ignoring -2 factor):

$$0 = E[(y_i - F_{v^*}(x_i'\beta^{NLS}))f_{v^*}(x_i'\beta^{NLS})x_i]$$

Plug-in estimator $\widehat{\beta}^{NLS}$ solves this in the sample

$$0 = \frac{1}{N} \sum_{i} (y_i - F_{v^*}(x_i'\widehat{\beta^{NLS}})) f_{v^*}(x_i'\widehat{\beta^{NLS}}) x_i$$

Look familiar?

3

MLE as Weighted Nonlinear Least Squares

Weighted NLS (like weighted least squares):

$$\beta^{wNLS} = \arg\min_{\beta} E\left[W(x_i, y_i)(y_i - F_{v^*}(x_i'\beta))^2\right]$$

for some (known) weight function $W(x_i, y_i)$. F.O.C.?

$$0 = \sum_{i} W(x_i, y_i) (y_i - F_{v^*}(x_i' \widehat{\beta^{wNLS}})) f_{v^*}(x_i' \widehat{\beta^{wNLS}}) x_i$$

Recall

$$0 = \sum_{i} \frac{(y_{i} - F_{v^{*}}(x_{i}'\widehat{\beta^{MLE}}))f_{v^{*}}(x_{i}'\widehat{\beta^{MLE}})x_{i}}{F_{v^{*}}(x_{i}'\widehat{\beta^{MLE}})(1 - F_{v^{*}}(x_{i}'\widehat{\beta^{MLE}}))}$$

 β^{MLE} is a weighted NLLS estimator! But with what weights?

MLE as Weighted Nonlinear Least Squares (cont.)

$$W^{MLE}(x_i, y_i) = \left(F_{v^*}(x_i'\widehat{\beta^{MLE}})(1 - F_{v^*}(x_i'\widehat{\beta^{MLE}}))\right)^{-1}$$

- MLE <u>infeasible</u> as one-step wNLS estimator ($\widehat{\beta}^{MLE}$ on both right and left of optimization)
- But recall another infeasible estimator

$$\widehat{\beta^{GLS}} = \arg\min_{\beta} \sum_{i} \left(\frac{y_i - x_i' \beta}{V_{\varepsilon}(x_i)} \right)^2$$

where $V_{\varepsilon}(x_i)$ is the conditional variance of ε_i . (depends on \widehat{eta}^{GLS})

• We make GLS feasible by taking a first-step consistent estimate of $V_{\varepsilon}(x_i)$ (by, say OLS), then solving

$$\widehat{\beta^{FGLS}} = \arg\min_{\beta} \sum_{i} \left(\frac{y_{i} - x_{i}'\beta}{\widehat{V_{\varepsilon}(x_{i})}} \right)^{2}$$

8

MLE as Weighted Nonlinear Least Squares (cont.)

$$W^{MLE}(x_i, y_i) = \frac{1}{F_{v^*}(x_i'\widehat{\beta^{MLE}})(1 - F_{v^*}(x_i'\widehat{\beta^{MLE}}))} = \frac{1}{\widehat{V_{v^*}(x_i)}}$$

Because y_i is bernoulli.

- Can take first-step consistent estimate of $W^{MLE}(x_i, y_i)$ (by, say NLS) then solving wNLS FOC to get $\widehat{\beta^{MLE_1}}$
- Use $\widehat{\beta^{MLE_1}}$ to get $\widehat{W^{MLE_1}} o \widehat{\beta^{MLE_2}} o \widehat{W^{MLE_2}} o ...$
- ullet Iterating to convergence gives $\widehat{eta^{MLE}}$

9

Going Latent (with Truncation): Tobit

Assume

$$y_i = \max(0, x_i' eta + arepsilon_i) \ arepsilon_i \sim N(0, \sigma^2)$$

Useful normal fact: if $w \sim N(\mu, \sigma^2)$ and c fixed,

$$E[w|w > c] = \mu + \sigma \frac{\phi\left(\frac{\mu - c}{\sigma}\right)}{\Phi\left(\frac{\mu - c}{\sigma}\right)} \text{ and } E[w|w < c] = \mu - \sigma \frac{\phi\left(\frac{c - \mu}{\sigma}\right)}{\Phi\left(\frac{c - \mu}{\sigma}\right)}$$

CEF:

$$E[y_{i}|x_{i}] = E[y_{i}|x_{i}, y_{i} = 0]P(y_{i} = 0|x_{i}) + E[y_{i}|x_{i}, y_{i} > 0]P(y_{i} > 0|x_{i})$$

$$= (x'_{i}\beta + E[\varepsilon_{i}|x_{i}, \varepsilon_{i} > -x'_{i}\beta])P(\varepsilon_{i} > -x'_{i}\beta|x_{i})$$

$$= \left(x'_{i}\beta + \sigma \frac{\phi(x'_{i}\beta/\sigma)}{\Phi(x'_{i}\beta/\sigma)}\right)\Phi(x'_{i}\beta/\sigma)$$

$$= x'_{i}\beta\Phi(x'_{i}\beta/\sigma) + \sigma\phi(x'_{i}\beta/\sigma)$$

Part 2: Some Facts about IV and 2SLS

Matrix-y IV

Setup:

- $n \times 1$ vector Y, $n \times r$ "endogenous" matrix X_1
- $n \times s$ matrix of "controls" X_2 , $n \times t$ matrix of "instruments" Z_1

$$X_1 = Z_1 \pi_1 + X_2 \pi_2 + V$$

 $Y = X_1 \beta_1 + X_2 \beta_2 + \varepsilon$

Terminology:

- (1) the first stage; (2) the second stage.
- Plugging (1) into (2) gives the reduced form:

$$y = (Z\pi_1 + X_2\pi_2 + v)\beta_1 + X_2\beta_2 + \varepsilon \ = Z_1(\pi_1\beta_1) + X_2(\pi_2\beta_1 + \beta_2) + (v\beta_1 + \varepsilon)$$

- Model is identified if $t \ge r$ (just-identified if t = r)
- Exclusion restriction: $E[Z'\varepsilon] = 0$ (weak), $E[\varepsilon|Z] = 0$ (strong)

(1)

(2)

Matrix-y IV (cont.)

$$X_1 = Z_1 \pi_1 + X_2 \pi_2 + v$$

 $Y = X_1 \beta_1 + X_2 \beta_2 + \varepsilon$

Define:

$$X \equiv \begin{bmatrix} X_1 & X_2 \end{bmatrix}, \quad n \times (r+s)$$

 $Z \equiv \begin{bmatrix} Z_1 & X_2 \end{bmatrix}, \quad n \times (t+s)$

Also define:

$$P_Z \equiv Z(Z'Z)^{-1}Z', \ P_2 \equiv X_2(X_2'X_2)^{-1}X_2, \ M_2 \equiv I - P_2$$

What's
$$P_ZZ = ? P_ZX = ? M_2X_2 = ? P_ZP_Z = ? P_Z' = ?$$

2SLS is an IV Estimator

IV Estimator:

$$\widehat{\beta^{IV}} \equiv (W'X)^{-1}W'Y$$
$$W \equiv ZA$$

where $A = (t+s) \times (r+s)$ is some (possibly random) matrix.

Note that when we're just-identified (t = r) A is (probably) invertible, so

$$\widehat{\beta^{IV}} \equiv (A'Z'X)^{-1}A'Z'Y = (Z'X)^{-1}A'^{-1}A'Z'Y = (Z'X)^{-1}Z'Y$$

⇒ all IV estimators are (numerically) equivalent when just-id

Two-Stage Least Squares sets $A \equiv (Z'Z)^{-1}Z'X$. What's W?

2SLS is a second-stage WLS/OLS regression

Two-Stage Least Squares is

$$\widehat{\beta}^{2SLS} = ((Z(Z'Z)^{-1}Z'X)'X)^{-1}(Z(Z'Z)^{-1}Z'X)'Y
= ((P_ZX)'X)^{-1}(P_ZX)'Y
= (X'P_ZX)^{-1}X'P_ZY
= ((P_ZX)'P_ZX)^{-1}(P_ZX)'Y$$
(3)

- (some kinda) Weighted Least Squares, by (3). What are the weights doing?
- (some kinda) Ordinary Least Squares, by (4). What are the regressors?

Just-ID IV is "reduced-form over first-stage"

$$\widehat{\beta^{2SLS}}$$
 is OLS of Y on P_ZX

When r = 1 (one endogenous regressor), $\beta_1^{2SL\bar{S}}$ is bivariate OLS of Y on M_2P_7X

$$\widehat{\beta_1^{2SLS}} \xrightarrow{p} \frac{Cov(y_i, \hat{x}_{1i}^*)}{Var(\hat{x}_{1i}^*)} = \frac{Cov(y_i, \hat{x}_{1i}^*)}{Cov(x_{1i}^*, \hat{x}_{1i}^*)}$$

When t = r (just-identified),

$$egin{aligned} extstyle Var(\hat{x}_{1i}^*) &= \pi_1^2 \, Var(Z_{1i}^*) \ extstyle Cov(y_i, \hat{x}_{1i}^*) &= Cov((\pi_1 eta_1) Z_1 + X_2(\pi_2 eta_1 + eta_2) + (v eta_1 + eta), \pi Z_i^*) \ &= \pi_1^2 \, eta \, Var(Z_{1i}^*) \end{aligned}$$

so that

$$\widehat{\beta_1^{2SLS}} \xrightarrow{p} \frac{\pi_1^2 \beta \sigma_{Z^*}^2}{\pi_1^2 \sigma_{Z^*}^2} = \underbrace{\overline{\pi_1 \beta}}_{FS} = \beta$$

MIT OpenCourseWare http://ocw.mit.edu

14.387 Applied Econometrics: Mostly Harmless Big Data Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.