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Part 1: Some More LATE

Part 1: Some More LATE
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Basic LATE Setup

Potential outcomes/treatment: Y;(d,z), Di;, Dy;, binary Z;

@ Four assumptions

@ Independence: ({Yi(d,z);Vd,z},Di;, Do) L Z;
@ Exclusion: Yi(1,z) = Yi1;, Yi(0,2) = Yo;, Vz, Vi
© Monotonicity: Dy; > Dygj, Vi
@ First stage: E[Dy1; > Dypi] #0

Assumptions 1-4 in words?

Linking observed to potentials:

D; = Dy; + (D1; — Doi) Z;
Yi = Yoi + (Y1i — Yoi)Di
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Proof of the LATE theorem
The LATE Theorem

Prop: Under Assumptions 1-4,
E[YZ, = 1] E[Yi|Z, = 0]
E[D;i|Z; = 1] — E[Dj|Z; = 0]
Direct proof:
E[D;i|Z; = 1] — E[Dj|Z; = 0] =E[D1;|Z; = 1] — E[Dyi| Z; = 0]
=E[D1; — Do)
=P(D1; > Dy;)

= E[Y1i — Yoi|D1i > Doi]

and
E[Yij|Zi = 1] — E[Yi|Z; = 0] =E[Yo; + (Y1i — Y0i) D1i[Zi = 1]
— E[Yoi+(Y1i — Yoi) Doi| Zi = 0]
=E[(Y1i — Yoi) D1i — (Y1i — Yoi) Doi
=E[(Y1i — Yo0i)(D1i — Doj)]
=E[Y1i — Yoi| D1i > Doi]P(D1i > Do;)
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LATE with Covariates
LATE with Covariates

@ In class we saw Abadie's (2003) weighting approach to identifying
LATE when Assumptions 1-4 hold conditional on covariates X;

@ Estimate (perhaps non-parametrically) E[Z;|X;] (first step)
@ Form kappa:

Di(1-Z) (1-D)Z

D;, Zi,X;) =1~ -
k(Di, 23, Xi) 1-E[Z|X]  E[ZIX]

© Estimate by WLS

(o, B) = 3rgmib“ E[x(Di, Zi, X:)(Y; — a— bD;)?]

@ Requires correcting WLS standard errors for first-step estimation,
parametric choice of E[Z;|Xj]; predictions may be outside (0,1)

@ Can we handle covariates just with 2SLS?
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EUBEETIE
Conditional LATE with 2SLS: “Saturate and Weight”

@ Suppose we can saturate in X; (e.g. stratified RCT with two-sided
compliance)

@ At each x in the support can identify

EIVi|Z =1, =x] = EV|Z=0.X=x] _p
E[Di|Zi=1,X; = x| —E[Di|Z; = 0,X; = x] _ "HATE

o MHE advice: “saturate and weight”

Yi=ax+PswDi+ ¢
Di=yx+mxZi+vi

i.e. we interact the instrument with every cell of X; (over-id)

@ What does 2SLS of a fully-saturated model identify?
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LATE with Covariates
“Saturate and Weight” (cont.)

@ Recall (e.g. PS#1) that Bsw is identified by OLS of
Y; = ax +BswDi+e&
where D; is the first-stage predicted value of D;.
o Recall (also PS#1) that, since this is OLS saturated in Xj,

5 _E[ﬁsw(Xi)GL%(Xi)]
T Ee3 (X))

@ Since the first stage is also saturated,
Bsw(x) = Brate(x)
03 (x) = Var(Di|X; = x)
= 12 Var(Zi| X; = x)
= P(Dy; > Dyj| X; = x)?03(x)
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EUBEETIE
Pros and Cons of “Saturate and Weight”

_ E[Brate(Xi)P(D1; > Doi| Xi)?02(X:)]
B E[P(D1j > Doi|Xi)?03(Xi)]

Bsw

o ldentify a convex combination of covariate-specific LATEs

o Get correct (2SLS) standard errors for free, but

o Why these weights? (square of complier share?)
o Weighting over full histogram of X; (not complier histogram)
e Specification could be heavily over-id'd; might lead to bias

@ Is there a better way?
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LATE wih Covariates
Partially-Linear IV (New!)

@ Suppose we instead run the just-identified IV model

Yi =6x + Pp.Di+ &
Di =éx+nZi+vi

First/second stage saturated in X; but linear in Z;/D;
e From Abadie (2003) we know
(6x,BpL) = arg rg?ti)r: E[x(D;i, Zi, X;)(Y; — tx — bD;)?]
=arg T;)r: E[(Y; — tx — bD;)?| D1 > D]

since E[Z;|Xi] is fit perfectly when X; saturates (Prop. 5.1 in paper)
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LATE wih Covariates
Partially-Linear IV (cont.)

(ex,ﬁpL) =arg rbnin E[(Y, —tx — bD,’)2|D1,' > Do,']
,tx

Again by PS#1/Angrist '98 logic

Bp, = E[BpL(Xi)0p, c(Xi)|D1i > Dol
P 03, ((X)ID1 > Dol

Now:
BpL(x) = BraTe(x)
O'%,C(X) = Var(D;\X,- =X, Dl,' > Do,')
= Var(Zj|X; = x, D1 > Dy;)

= 07(x)
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LATE vith Covarates
Pros of Partially-Linear IV

By = E[BLaTe(X:)02(X:)| D1i > Doj]
P T E[03(X)| Dy > Dol

Also identify a convex comb. of B are(X;) with a partially-linear first
stage

Get correct standard errors for free
Weights more intuitive (like usual FE weights)
Weighting by complier histogram of X;

Potential efficiency argument (not yet worked out)

Bottom line: can easily handle saturating covs with IV

When you can't saturate, do kappa
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Part 2: Differences and Changes

Part 2: Differences and Changes
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Diff-in-diffs and Fixed Effects Regression
Diff-in-diffs and Fixed Effects Regression

o Model:
’/it — ai‘f"}/t +pD,t+XIItB +8it

where i =1,..., N are potentially treated states, t =1,..., T is time, d;;
is an indicator for treatment in state / at time t, and x;; are controls

@ Can get rid of state effects by first-differencing the data
AYje = Ay, + pAD; + AX,B + Agje
This is how Card (1992) does Diff-in-Diffs
@ Alternatively can demean the data within states
Yie = e+ pDie + X} B + &t
This is what a fixed-effects regression does
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Diff-in-diffs and Fixed Effects Regression
Diff-in-diffs and FEs (cont.)

o If the model is correct and all variables are measured properly, both
methods are consistent for p

o Motivates measurement error tests (Griliches and Hausman, 1986)
o With only two periods, the methods are numerically equivalent
@ Proof of this: write

Yie = ai+ Wil + &
Yii+ Yie
2

AY;=Yn—Yn

{/itEYi—
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Diff-in-diffs and Fixed Effects Regression
Diffs=FEs when T=2

Note that
Yilzyi _ 112 i2
1
= ii( Yii— Yi2)
1
— _ZAY;
2
Similarly
~ Y+Y
Yi2:Yi _ 1/2 i2
1
— ZAY,
2
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Diff-in-diffs and Fixed Effects Regression
Diffs=FEs when T=2 (cont.)
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Change-in-Changes

@ Recall an inherent drawback of difference-in-differences: taking
functional form seriously

o Can't (typically) have parallel trends in both levels and logs

o Athey and Imbens (2006) consider a semiparametric framework to
overcome this using estimated distributions of potential outcomes

o AI'09 assumptions are strong (unlike AlI'94): no D-in-D free lunch!

o Basic idea: treatment preserves rank in the outcome distribution;
impute the counterfactual change in outcomes for treated using the
change in control distribution
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Part 2: Differences and Changes Change-in-Changes (Athey and Imbens, 2006)
C-in-C Setup

@ Start with a weak assumption: untreated outcomes satisfy
YP =h(U;, T))
where T; € {0,1} denotes time and U; is unobserved heterogeneity
@ Nests canonical D-in-D setup:

U =a+7Gi+¢g
h(u,t)=u+d-t
Ej A (G,', T,')
where G; € {0,1} denotes groups. With treatment /; = G;- T; and
constant effects,
Yi=Y2+pl;
=a+YGi+6Ti+pGi-Ti+&
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ET PR (I ILE G EL SOl Change-in-Changes (Athey and Imbens, 2006)

C-in-C Assumptions

Assumption 1 (Strict monotonicity): h(u,t) is strictly increasing in u

Assumption 2 (Time invariance): U; L T;|G;

o Imply rank-preservation: if my U; puts me at the g-th quantile of the

distribution of Y,-0 at T; =0, it also puts me there at T; =1
o Very strong: like Chernozhukov and Hansen (2005) for quantile IV

@ Allow us to impute the change in non-treated outcomes for treated in
T; = 1; conceptually very similar to D-in-D:

Employment Rate

Employment trend
in control state

Employment trend J
in treatment state X

-~ } Treatment
i Effect
-
Counterfactual —/ g --
employment trend

in treatment state

1
Before After Time

© Princeton University Press. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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Change-in-Changes (Athey and Imbens, 2006)
C-in-C Identification

Proposition: Under Al & A2 (and a few other technical conditions)

E[Yii— Yol = E[YH] —E[Fy 51 (Fy.00(Y0))]

Observed Counterfactual

For every value y in the pre-treatment distribution of the treated (Fio):
e Find quantile g = Fy go(y)
@ Observe among controls that quantile g changed to y/' = F;ylol(q)
Average these new y’ according to the distribution of y
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Change-in-Changes (Athey and Imbens, 2006)
C-in-C Mechanics

Group 0 F., F

@ Inference on C-in-C estimator: not a walk in the park (see paper)
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