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Part 1: Some More LATE Proof of the LATE theorem 

Basic LATE Setup
 

Potential outcomes/treatment: Yi (d ,z), D1i , D0i , binary Zi 

Four assumptions 
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Independence: ({Yi (d ,z); ∀d , z}, D1i ,D0i ) ⊥⊥ Zi 
Exclusion: Yi (1,z) = Y1i , Yi (0,z) = Y0i , ∀z , ∀i 
Monotonicity: D1i ≥ D0i , ∀i 
First stage: E [D1i > D0i ]  = 0 

Assumptions 1-4 in words? 

Linking observed to potentials: 

Di = D0i +(D1i − D0i )Zi 

Yi = Y0i +(Y1i − Y0i )Di 
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Part 1: Some More LATE Proof of the LATE theorem 

The LATE Theorem 

Prop: Under Assumptions 1-4, 
E [Yi |Zi = 1] − E [Yi |Zi = 0] 

= E [Y1i − Y0i |D1i > D0i ]E [Di |Zi = 1] − E [Di |Zi = 0] 
Direct proof: 

E [Di |Zi = 1] − E [Di |Zi = 0] =E [D1i |Zi = 1] − E [D0i |Zi = 0] 
=E [D1i − D0i ] 

=P(D1i > D0i ) 

and 

E [Yi |Zi = 1] − E [Yi |Zi = 0] =E [Y0i +(Y1i − Y0i )D1i |Zi = 1] 
− E [Y0i +(Y1i − Y0i )D0i |Zi = 0] 

=E [(Y1i − Y0i )D1i − (Y1i − Y0i )D0i ] 

=E [(Y1i − Y0i )(D1i − D0i )] 

=E [Y1i − Y0i |D1i > D0i ]P(D1i > D0i ) 
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Part 1: Some More LATE LATE with Covariates 

LATE with Covariates
 

In class we saw Abadie’s (2003) weighting approach to identifying 
LATE when Assumptions 1-4 hold conditional on covariates Xi 
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 Estimate (perhaps non-parametrically) E [Zi |Xi ] (first step) 
Form kappa: 

Di (1 − Zi ) (1 − Di )Zi
κ(Di ,Zi ,Xi ) = 1 − −1 − E [Zi |Xi ] E [Zi |Xi ] 

3 Estimate by WLS 

(α,β ) = argminE [κ(Di ,Zi ,Xi )(Yi − a − bDi )
2] 

a,b 

Requires correcting WLS standard errors for first-step estimation, 
parametric choice of E [Zi |Xi ]; predictions may be outside (0,1) 

Can we handle covariates just with 2SLS? 
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Part 1: Some More LATE LATE with Covariates 

Conditional LATE with 2SLS: “Saturate and Weight” 

Suppose we can saturate in Xi (e.g. stratified RCT with two-sided 
compliance) 

At each x in the support can identify 

E [Yi |Zi = 1,Xi = x ] − E [Yi |Zi = 0,Xi = x ] ≡ βLATE (x)E [Di |Zi = 1,Xi = x ] − E [Di |Zi = 0,Xi = x ] 

MHE advice: “saturate and weight” 

Yi = αX + βSW Di + εi 

Di = γX + πX Zi + νi 

i.e. we interact the instrument with every cell of Xi (over-id) 

What does 2SLS of a fully-saturated model identify? 
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Part 1: Some More LATE LATE with Covariates 

“Saturate and Weight” (cont.) 

Recall (e.g. PS#1) that βSW is identified by OLS of 

Yi = αX + βSW D̂i + εi 

where D̂i is the first-stage predicted value of Di . 

Recall (also PS#1) that, since this is OLS saturated in Xi , 

βSW = D 
(Xi )]

2E Xβ σ[ ( )iSW ˆ

2E Xσ[ ( )]iD̂

Since the first stage is also saturated, 

βSW (x) = βLATE (x) 
σ

2 
D̂(x) = Var(D̂i |Xi = x) 

= π2Var(Zi |Xi = x)x 

= P(D1i > D0i |Xi = x)2
σZ 

2 (x) 
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Part 1: Some More LATE LATE with Covariates 

Pros and Cons of “Saturate and Weight”
 

E [βLATE (Xi )P(D1i > D0i |Xi )
2σZ 

2 (Xi )]
βSW = 

E [P(D1i > D0i |Xi )2σZ 
2 (Xi )] 

Identify a convex combination of covariate-specific LATEs 

Get correct (2SLS) standard errors for free, but 
Why these weights? (square of complier share?) 
Weighting over full histogram of Xi (not complier histogram) 
Specification could be heavily over-id’d; might lead to bias 

Is there a better way? 
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Part 1: Some More LATE LATE with Covariates 

Partially-Linear IV (New!)
 

Suppose we instead run the just-identified IV model 

Yi =θX + βPLDi + εi
 

Di =δX + πZi + νi
 

First/second stage saturated in Xi but linear in Zi /Di
 

From Abadie (2003) we know 

(θX ,βPL) = argminE [κ(Di ,Zi ,Xi )(Yi − tX − bDi )
2]

b,tX 

= argminE [(Yi − tX − bDi )
2|D1i > D0i ]

b,tX 

since E [Zi |Xi ] is fit perfectly when Xi saturates (Prop. 5.1 in paper) 
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Part 1: Some More LATE LATE with Covariates 

Partially-Linear IV (cont.)
 

(θX ,βPL) = argminE [(Yi − tX − bDi )
2|D1i > D0i ]

b,tX 

Again by PS#1/Angrist ’98 logic 

E [βPL(Xi )σD
2 

i ,C (Xi )|D1i > D0i ]
βPL = 

E [σD
2 

i ,C (Xi )|D1i > D0i ] 

Now: 

βPL(x) = βLATE (x) 
σD

2 
,C (x) = Var(Di |Xi = x ,D1i > D0i ) 

= Var(Zi |Xi = x ,D1i > D0i ) 

= σZ 
2 (x) 
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Part 1: Some More LATE LATE with Covariates 

Pros of Partially-Linear IV
 

E [βLATE (Xi )σZ 
2 (Xi )|D1i > D0i ]

βPL = 
E [σZ 

2 (Xi )|D1i > D0i ] 

Also identify a convex comb. of βLATE (Xi ) with a partially-linear first 
stage 

Get correct standard errors for free 

Weights more intuitive (like usual FE weights) 

Weighting by complier histogram of Xi 

Potential efficiency argument (not yet worked out) 

Bottom line: can easily handle saturating covs with IV 

When you can’t saturate, do kappa 
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Part 2: Differences and Changes 
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Part 2: Differences and Changes Diff-in-diffs and Fixed Effects Regression 

Diff-in-diffs and Fixed Effects Regression 

Model: 

Yit = αi + γt + ρDit + Xit 
f 
β + εit 

where i = 1, ...,N are potentially treated states, t = 1, ...,T is time, dit 

is an indicator for treatment in state i at time t, and xit are controls 

Can get rid of state effects by first-differencing the data 

ΔYit =Δγt + ρΔDit +ΔXit
f
β +Δεit 

This is how Card (1992) does Diff-in-Diffs 

Alternatively can demean the data within states 

˜ X fYit = γ̃t + ρD̃it + ˜it β + ε̃it 

This is what a fixed-effects regression does 
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Part 2: Differences and Changes Diff-in-diffs and Fixed Effects Regression 

Diff-in-diffs and FEs (cont.)
 

If the model is correct and all variables are measured properly, both 
methods are consistent for ρ 

Motivates measurement error tests (Griliches and Hausman, 1986) 

With only two periods, the methods are numerically equivalent 

Proof of this: write 

Yit = αi + Wit 
f 
µ + εit 

˜ Yi1 + Yi2Yit ≡ Yit − 2 
ΔYi ≡ Yi2 − Yi1 
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Part 2: Differences and Changes Diff-in-diffs and Fixed Effects Regression 

Diffs=FEs when T=2 

Note that 

˜ Yi1 + Yi2Yi1 = Yi1 − 2 

= 2
1 
(Yi1 − Yi2) 

1 
= −2ΔYi 

Similarly 

Y1i + Yi2˜ = Yi2 −Yi2 2 
1 

= 2ΔYi 
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Part 2: Differences and Changes Diff-in-diffs and Fixed Effects Regression 

Diffs=FEs when T=2 (cont.) 

Thus   −1  
N N 

∑
 ˜ W f W fWi1 ˜ i1 + W̃i2 ˜ i2 ∑
W̃i1Ỹi1 + W̃i2Ỹi2ˆ =µFE 
i=1 i=1   −1  

N N1
 

ΔWi ΔWi 
f + 

1
 
4

ΔWi ΔW f i

1
 
4

ΔWi ΔYi + 

1
 
4

ΔWi ΔYi∑
 ∑
 

i=1 
=
 4
i=1   −1  

N N 

∑
ΔWi ΔW f i ∑
ΔWi ΔYi=

i=1 

= µ̂FD 

i=1 

D 

15/20 



Part 2: Differences and Changes Change-in-Changes (Athey and Imbens, 2006) 

Change-in-Changes
 

Recall an inherent drawback of difference-in-differences: taking
 
functional form seriously
 

Can’t (typically) have parallel trends in both levels and logs 

Athey and Imbens (2006) consider a semiparametric framework to 
overcome this using estimated distributions of potential outcomes 

AI’09 assumptions are strong (unlike AI’94): no D-in-D free lunch! 

Basic idea: treatment preserves rank in the outcome distribution; 
impute the counterfactual change in outcomes for treated using the 
change in control distribution 
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Part 2: Differences and Changes Change-in-Changes (Athey and Imbens, 2006) 

C-in-C Setup 

Start with a weak assumption: untreated outcomes satisfy 

Y 0 = h(Ui ,Ti )i 

where Ti ∈ {0,1} denotes time and Ui is unobserved heterogeneity 

Nests canonical D-in-D setup: 

Ui = α + γGi + εi 

h(u, t) = u + δ · t 
εi ⊥⊥ (Gi ,Ti ) 

where Gi ∈ {0,1} denotes groups. With treatment Ii ≡ Gi · Ti and 
constant effects, 

= Y 0 + ρIiYi i 

= α + γGi + δ Ti + ρGi · Ti + εi 
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Part 2: Differences and Changes Change-in-Changes (Athey and Imbens, 2006) 

C-in-C Assumptions
Assumption 1 (Strict monotonicity): h(u, t) is strictly increasing in u
Assumption 2 (Time invariance): Ui ⊥⊥ Ti |Gi

Imply rank-preservation: if my Ui puts me at the q-th quantile of the
distribution of Y 0 at Ti = 0, it also puts me there at Ti = 1i 

Very strong: like Chernozhukov and Hansen (2005) for quantile IV
Allow us to impute the change in non-treated outcomes for treated in
Ti = 1; conceptually very similar to D-in-D:

18/20 
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Part 2: Differences and Changes Change-in-Changes (Athey and Imbens, 2006) 

C-in-C Identification
 

Proposition: Under A1 & A2 (and a few other technical conditions) 

E [Y 1 
00] = E [Y 1 −E [FY 

−
,
1
01(FY ,00(Y10))]11 − Y 0 

11]        
Observed Counterfactual 

For every value y in the pre-treatment distribution of the treated (F10): 
Find quantile q = FY ,00(y) 
Observe among controls that quantile q changed to y f = FY 

−
,
1
01(q) 

Average these new y f according to the distribution of y 
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Part 2: Differences and Changes Change-in-Changes (Athey and Imbens, 2006) 

C-in-C Mechanics
 

Group 1 

Group 0 

q 

F 10 
F 11 

F 00 
F 01 

y y' 

1 

2 

3 
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Inference on C-in-C estimator: not a walk in the park (see paper)
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