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Regression: What You Need to Know
 

We spend our lives running regressions (I should say: 
"regressions run me"). And yet this basic empirical tool is often 
misunderstood. So I begin with a recap of key regression 
properties. We need these to make sense of IV as well. 

Our regression agenda: 

Three reasons to love 

The CEF is all you need 

The long and short of regression anatomy 

The OVB formula 

Limited dependent variables and marginal effects 

Causal vs. casual 
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The CEF
 

• The Conditional Expectation Function (CEF) for a dependent
variable, Yi given a K×1 vector of covariates, Xi (with elements xki )
is written E [Yi |Xi ] and is a function of Xi

• Because Xi is random, the CEF is random. For dummy Di , the CEF
takes on two values, E [Yi |Di = 1] and E [Yi |Di = 0]

• For a specific value of Xi , say Xi = 42, we write E [Yi |Xi = 42]
• For continuous Yi with conditional density fy (·|Xi = x), the CEF is 

E [Yi |Xi = x ] = tfy (t|Xi = x) dt

If Yi is discrete, E [Yi |Xi = x ] equals the sum ∑t tfy (t|Xi = x)
• The CEF residual is uncorrelated with any function of of Xi . Write

εi ≡Yi − E [Yi |Xi ].Then for any function, h(Xi ) :

E [εi h(Xi )] = E [(Yi − E [Yi |Xi ])h(Xi )] = 0

(The LIE proves it) 
• Figure 3.1.1 shows my favorite CEF 3
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Population Regression 

• Define population regression ("regression," for short) as the solution
to the population least squares problem. Specifically, the K×1
regression coeffi cient vector β is defined by solving 

2
β = arg min E Yi − Xi

;b
b 

• Using the first-order condition,

E Xi Yi − Xi 
; b = 0,

the solution for b can be written   −1 
β = E Xi X; E [Xi Yi ]i

• By construction, E [Xi (Yi − X;i β)] = 0. In other words, the
population residual, defined as Yi −Xi;β = ei , is uncorrelated with the
regressors, Xi

• This error term has no life of its own: ei owes its meaning and
existence to β 5

[( ) ]
[ ( )]



Three reasons to love

1 Regression solves the population least squares problem and is
therefore the BLP of yi given Xi

2 If the CEF is linear, regression is it
3 Regression gives the best linear approximation to the CEF

• The first is true by definition; the second follows immediately from
CEF-orthgonality. Let’s prove the third - it’s my favorite!

Theorem

The Regression-CEF Theorem (MHE 3.1.6)
The population regression function Xi

′β provides the MMSE linear
approximation to E [yi |Xi ], that is,

β = argminE{ 2(E [yi |Xi ]−Xi′b) .
b

}

• Figure 3.1.2 illustrates the theorem (What does this depend on?)
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Figure 3.1.2 - A conditional expectation function and weighted regression line
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The CEF is all you need
 

• The regression-CEF theorem implies we can use E [Yi |Xi ] as a
dependent variable instead of Yi (but watch the weighting!) 

• Another way to see this:

β = E [Xi Xi
; ]−1E [Xi Yi ] = E [Xi X;i ]

−1E [Xi E (Yi |Xi )] (1)

The CEF or grouped-data version of the regression formula is useful 
when working on a project that precludes the analysis of micro data 

• To illustrate, we can estimate the schooling coeffi cient in a wage
equation using 21 conditional means, the sample CEF of earnings
given schooling

• As Figure 3.1.3 shows, grouped data weighted by the number of
individuals at each schooling level produces coeffi cients identical to
that generated by the underlying micro data

8



!" !"#$%&' () *#+,-. '&.'&//,0- *#+& /&-/&

A - Individual-level data

. regress earnings school, robust

      Source |       SS       df       MS        Number of obs =  409435

-------------+------------------------------     F(  1,409433) =49118.25

       Model | 22631.4793      1  22631.4793     Prob > F      =  0.0000

    Residual |  188648.31 409433  .460755019     R-squared     =  0.1071

-------------+------------------------------     Adj R-squared =  0.1071

       Total | 211279.789 409434   .51602893     Root MSE      =  .67879

-------------+----------------------------------------------------------
             |               Robust Old Fashioned

    earnings |      Coef.   Std. Err.      t           Std. Err.       t 
-------------+----------------------------------------------------------
      school |   .0674387   .0003447   195.63          .0003043   221.63

      const. |   5.835761   .0045507  1282.39          .0040043  1457.38
------------------------------------------------------------------------

B - Means by years of schooling

. regress average_earnings school [aweight=count], robust

(sum of wgt is   4.0944e+05)

      Source |       SS       df       MS        Number of obs =      21

-------------+------------------------------     F(  1,    19) =  540.31

       Model |  1.16077332     1  1.16077332     Prob > F      =  0.0000

    Residual |  .040818796    19  .002148358     R-squared     =  0.9660

-------------+------------------------------     Adj R-squared =  0.9642

       Total |  1.20159212    20  .060079606     Root MSE      =  .04635

-------------+----------------------------------------------------------
     average |               Robust Old Fashioned

   _earnings |      Coef.   Std. Err.      t           Std. Err.       t 
-------------+----------------------------------------------------------
      school |   .0674387   .0040352    16.71         .0029013     23.24

      const. |   5.835761   .0399452   146.09         .0381792    152.85
------------------------------------------------------------------------
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Regression anatomy lesson
 

Cov (Yi ,xi )• Bivariate reg recap: the slope coeffi cient is β1 = , and the V (xi )
 
intercept is α = E [Yi ] − β1E [Xi ]

• With more than one non-constant regressor, the k-th non-constant
slope coeffi cient is:

Cov (Yi , x̃ki )
βk = , (2)

V (x̃ki ) 

where x̃ki is the residual from a regression of xki on all other covariates 
• The anatomy formula shows us that each coeffi cient in a multivariate
regression is the bivariate slope coeffi cient for the corresponding
regressor, after "partialing out" other variables in the model.

• Verify the regression-anatomy formula by subbing

Yi = β0 + β1x1i + ... + βk xki + ... + βKxKi + ei

in the numerator of (2) and work through to find that 
Cov (Yi ,x̃ki  ) = βk V (x̃ki  )  10



Omitted Variables Bias 

• The omitted variables bias (OVB) formula describes the relationship
between regression estimates in models with different controls

• Go long: wages on schooling, si , controlling for ability (Ai )

Yi	 = α + ρsi + Ai
;γ + εi (3) 

• Ability is hard to measure. What if we leave it out? The result is

Cov (Yi , si ) 
= ρ + γ;δAs ,V (si ) 

where δAs is the vector of coeffi cients from regressions of the 
elements of Ai on si . . . 
• Short equals long plus the effect of omitted times the regression of
omitted on included 

• Short equals long when omitted and included are uncorrelated
• Table 3.2.1 illustrates OVB (some controls are bad; the formula
works for good and bad alike) 11
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Table 3.2.1
Estimates of the returns to education for men in the NLSY

(1) (2) (3) (4) (5)
Col. (2) and Col. (4), with

Age Additional Col. (3) and Occupation
Controls: None Dummies Controls∗ AFQT Score Dummies

.132 .131 .114 .087 .066
(.007) (.007) (.007) (.009) (.010)

Notes: Data are from the National Longitudinal Survey of Youth (1979 cohort, 2002
survey). The table reports the coefficient on years of schooling in a regression of log
wages on years of schooling and the indicated controls. Standard errors are shown in
parentheses. The sample is restricted to men and weighted by NLSY sampling weights.
The sample size is 2,434.
∗Additional controls are mother’s and father’s years of schooling, and dummy variables
for race and census region.

that the regression you’ve got is the one you want. And the
regression you want usually has a causal interpretation. In
other words, you’re prepared to lean on the CIA for a causal
interpretation of the long regression estimates.

At this point, it’s worth considering when the CIA is most
likely to give a plausible basis for empirical work. The best-
case scenario is random assignment of si, conditional on Xi,
in some sort of (possibly natural) experiment. An example is
the study of a mandatory retraining program for unemployed
workers by Black et al. (2003). The authors of this study
were interested in whether the retraining program succeeded
in raising earnings later on. They exploited the fact that eli-
gibility for the training program they studied was determined
on the basis of personal characteristics and past unemploy-
ment and job histories. Workers were divided into groups
on the basis of these characteristics. While some of these
groups of workers were ineligible for training, workers in other
groups were required to take training if they did not take a
job. When some of the mandatory training groups contained

© Princeton University Press. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Limited dependent variables 

• Regression always make sense in the sense that regression
approximates the CEF

• Can I really use OLS if my dependent variable is . . . a dummy (like
employment); non-negative (like earnings); a count variable (like
weeks worked)?

• Regress easy, grasshopper . . . but if you do stray, show me the MFX
• Probing probit: assume that LFP is determined by a latent variable,
Yi 
∗, satisfying

Yi 
∗ = β0 

∗ + β1
∗ si − νi , (4) 

where νi is distributed N(0, σ2 ν). The latent index model says

Yi = 1[Y∗ > 0],i 

so the CEF can be written 

β ∗ 0 + β1
∗ siE [Yi |si ] = Φ

σν
13

[ ]



      

  

Limited dependent variables (cont.)
 

• For Bernoulli si :

β ∗ β0 
∗ + β ∗ β ∗0 1 0E [Yi |si ] = Φ + Φ − Φ si

σν σν σν

OLS is bang on here! (why?) 
• But it ain’t always about treatment effects; MFX for probit are

β ∗ β ∗∂E [Yi |si ] 0 + β1 
∗ siE = E ϕ 1 (5)

∂si σν σν

Index coeffi cients tell us only the sign of the effect of si on average Yi
(sometimes, as in MNL, not even that) 

• For logit:

∂E [Yi |si ]E = E [Λ(β0 
∗ + β1

∗ si )(1 − (Λβ ∗ 0 + β1
∗ si ))]β ∗ (6)1∂si

• OLS and MFX from any nonlinear alternative are usually close
(identical for probit when si is Normal) 14

[ ] { [ ] [ ]}

( ) ( [ ])

( )



      

      

    

           
   

     

Making MFX
 

• Are derivative-based MFX kosher in a discrete-regressor scenario?
• With covariates, stata generates discrete average derivatives like this,

β∗; β∗;0 Xi + β ∗ 0 XiE Φ 1 − Φ (7)
σν σν 

• Note that

Xi
;β0 
∗ + β ∗ Xi

;β ∗ Xi
;β0 
∗ + Δi1 0 β ∗Φ = Φ + ϕ 1σν σν σν 

for some Δi ∈ [0, β1
∗ ]. So the continuous MFX calculation

Xi
;β ∗ 
0 + β1

∗ siE ϕ β ∗ (8)1σν 

approximates the discrete 

• Stata notices discrete regressors, in which case you’llget (7) unless
you ask for (8)

• OLS vindicated: MHE Table 3.4.2 15

{ [ ] [ ]}

[ ] [ ] [ ]

{ [ ]}
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Table 3.4.2
Comparison of alternative estimates of the effect of childbearing on LDVs

Right-Hand-Side Variable

More than Two Children Number of Children

Probit Tobit Probit MFX Tobit MFX

Avg. Avg.
Effect, Avg. Effect, Avg. Avg. Effect, Avg. Avg.
Full Effect on Full Effect on Full Effect, Full Effect on

Mean OLS Sample Treated Sample Treated OLS Sample Sample Treated
Dependent variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

A. Full sample
Employment .528 −.162 −.163 −.162 — — −.113 −.114 — —

(.499) (.002) (.002) (.002) (.001) (.001)
Hours worked 16.7 −5.92 — — −6.56 −5.87 −4.07 — −4.66 −4.23

(18.3) (.074) (.081) (.073) (.047) (.054) (.049)

B. Nonwhite college attenders over age 30, first birth before age 20
Employment .832 −.061 −.064 −.070 — — −.054 −.048 — —

(.374) (.028) (.028) (.031) (.016) (.013)
Hours worked 30.8 −4.69 — — −4.97 −4.90 −2.83 — −3.20 −3.15

(16.0) (1.18) (1.33) (1.31) (.645) (.670) (.659)

Notes: The table reports OLS estimates, average treatment effects, and marginal effects (MFX) for the effect of childbearing on mothers’
labor supply. The sample in panel A includes 254,654 observations and is the same as the 1980 census sample of married women used
by Angrist and Evans (1998). Covariates include age, age at first birth, and dummies for boys at first and second birth. The sample in
panel B includes 746 nonwhite women with at least some college aged over 30 whose first birth was before age 20. Standard deviations
are reported in parentheses in column 1. Standard errors are shown in parentheses in other columns. The sample used to estimate average
effects on the treated in columns 4, 6, and 10 includes women with more than two children.
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Casual vs. causal 

• Casual regressions happen for many reasons: exploratory or
descriptive analysis, just having fun, no long-term commitment . . .

• Causal regressions are more serious and enduring, describe
counterfactual states of the world, useful for policy analysis

• Americans mortgage homes to send a child to elite private colleges.
Does private pay? Denote private attendance by Ci . The causal
relationship between private college attendance and earnings is

Y1i if Ci = 1 
Y0i if Ci = 0 

• Y1i −Y0i is an individual causal effect. Alas, we only get to see one of
Y1i or Y0i . The observed outcome, Yi , is 

Yi	 = Y0i + (Y1i − Y0i )Ci (9) 

We hope to measure average Y1i −Y0i for some group, say those who
went private: E [Y1i −Y0i |Ci = 1], i.e., TOT 17



Casual vs. causal (cont.)
 

• Comparisons of those who did and didn’t go private are biased:

E [Yi |Ci	 = 1] − E [Yi |Ci = 0] = E [Y1i − Y0i |Ci = 1] (10)'    '    
Observed difference in earnings	 TOT 

+E [Y0i |Ci = 1] − E [Y0i |Ci = 0]'    
selection bias 

• It seems likely that those who go to private college would have earned
more anyway. The naive comparison, E [Yi |Ci = 1] − E [Yi |Ci = 0],
exaggerates the benefits of private college attendance 
• Selection bias = OVB in a causal model

• The conditional independence assumption (CIA) asserts that
conditional on observed Xi , selection bias disappears:

{Y0i ,Y1i } I Ci |Xi (11) 

• Given the CIA, conditional-on-Xi comparisons are causal:

E [Yi |Xi , Ci = 1] − E [Yi |Xi , Ci = 0] = E [Y1i − Y0i |Xi ]
18



Using the CIA
 

• The CIA means that Ci is "as good as randomly assigned,"
conditional on Xi

• A secondary implication: Given the CIA, the conditional on Xi causal
effect of private college attendance on private graduates equals the
average private effect at Xi :

E [Y1i − Y0i |Xi , Ci = 1] = E [Y1i − Y0i |Xi ]
• This is important . . . but less important than the elimination of
selection bias 

• Note also that the marginal average private college effect can be
obtained by averaging over Xi : 

E {E [Yi |Xi , Ci = 1] − E [Yi |Xi , Ci = 0]}
= E {E [Y1i − Y0i |Xi ]}
= E [Y1i − Y0i ]

• This suggests we compare people with the same X’s ... like matching
. . . but I wanna regress! 19



      

          
          

Regression and the CIA
 

• The regression machine turns the CIA into causal effects

• Constant causal effects allow us to focus on selection issues (MHE 3.3
relaxes this). Suppose

Y0i = α + ηi (12) 

Y1i = Y0i + ρ 

• Using (9) and (12), we have

Yi = α + ρCi + ηi (13) 

• Equation (13) looks like a bivariate regression model, except that
(12) associates the coeffi cients  in (13) with a causal relationship

• This is not a regression, because Ci can be correlated with potential
outcomes, in this case, the residual, ηi

20



Regression and the CIA (cont.) 

• The CIA applied to our constant-effects setup implies:

E [ηi |Ci , Xi ] = E [ηi |Xi ]
• Suppose also that

E [ηi |Xi ] = Xi
;γ

so that 

E [Yi |Xi , Ci ] = α + ρCi + E [ηi |X] = α + ρCi + Xi
;γ

• Mean-independence implies orthogonality, so

Yi = α + ρCi + Xi
;γ + vi (14) 

has error 
νi ≡ ηi − Xi

;γ = ηi − E [ηi |Ci , Xi ]
uncorrelated with regressors, Ci and Xi . The same ρ appears in the 
regression and causal models! 

• Modified Dale and Krueger (2002): private proving ground 21
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Private	 Public	

Applicant	
Group	

Student	 Ivy	 Leafy	 Smart	 All	State	 Ball	State	 Altered	
State	

1996	Earnings	

A	

1	 Reject	 Admit	 Admit	 110,000	

2	 Reject	 Admit	 Admit	 100,000	

3	 Reject	 Admit	 Admit	 110,000	

B	
4	 Admit	 Admit Admit	 60,000	

5	 Admit	 Admit Admit	 30,000	

C	
6	 Admit	 115,000	

7	 Admit	 75,000	

D	
8	 Reject	 Admit	 Admit	 90,000	

9	 Reject	 Admit	 Admit	 60,000	

Notes:	Students	enroll	at	the	college	indicated	in	bold;	enrollment	decisions	are	also	highlighted	in	grey.	

Table 2.1: The College Matching Matrix

Matchmaker, Matchmaker . . . Find Me a College!
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2.5. APPENDIX: REGRESSION THEORY 81

No Selection Controls Selection Controls

1 

(1) (2) (3) (4) (5) (6) 
Private School 0.135 0.095 0.086 0.007 0.003 0.013

(0.055) (0.052) (0.034) (0.038) (0.039) (0.025)
Own SAT score/100 0.048 0.016 0.033 0.001 

(0.009) (0.007) (0.007) (0.007)
Predicted log(Parental Income) 0.219 0.190 

(0.022) (0.023)
Female -0.403 -0.395

(0.018) (0.021)
Black 0.005 -0.040

(0.041) (0.042)
Hispanic 0.062 0.032

(0.072) (0.070)
Asian 0.170 0.145

(0.074) (0.068)
Other/Missing Race -0.074 -0.079

(0.157) (0.156)
High School Top 10 Percent 0.095 0.082 

(0.027) (0.028)
High School Rank Missing 0.019 0.015 

(0.033) (0.037)
Athlete 0.123 0.115

(0.025) (0.027)
Selection Controls N N N Y Y Y 
Notes: Columns (1)-(3) include no selection controls. Columns (4)-(6) include a dummy for each group 
formed by matching students according to schools at which they were accepted or rejected. Each model 
is estimated using only observations with Barron’s matches for which different students attended both 
private and public schools. The sample size is 5,583. Standard errors are shown in parentheses. 

Table 2.2: Private School Effects: Barron’s Matches
© Princeton University Press. All rights reserved. This content is excluded from our Creative 
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82 CHAPTER 2. MATCHING AND REGRESSION

No Selection Controls Selection Controls 

1 

(1) (2) (3) (4) (5) (6)
Private School 0.212 0.152 0.139 0.034 0.031 0.037

(0.060) (0.057) (0.043) (0.062) (0.062) (0.039)
Own SAT Score/100 0.051 0.024 0.036 0.009 

 (0.008) (0.006)  (0.006) (0.006)
Predicted log(Parental Income) 0.181 0.159 

 (0.026)  (0.025)
Female  -0.398   -0.396

 (0.012)  (0.014)
Black  -0.003   -0.037

 (0.031)  (0.035)
Hispanic  0.027   0.001

 (0.052)  (0.054)
Asian  0.189   0.155

 (0.035)  (0.037)
Other/Missing Race -0.166 -0.189 

 (0.118)  (0.117)
High School Top 10 Percent 0.067 0.064 

 (0.020)  (0.020)
High School Rank Missing 0.003 -0.008 

 (0.025)  (0.023)
Athlete  0.107   0.092

 (0.027)  (0.024)
Average SAT Score of 0.110 0.082 0.077 
Schools Applied to/100 (0.024) (0.022) (0.012) 
Sent Two Application 0.071 0.062 0.058 

(0.013) (0.011) (0.010)
Sent Three Applications 0.093 0.079 0.066

(0.021) (0.019) (0.017)
Sent Four or more Applications    0.139 0.127 0.098 

(0.024) (0.023) (0.020)
Note: Standard errors are shown in parentheses.  The sample size is 14,238. 

Table 2.3: Private School Effects: Average SAT Controls
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2.5. APPENDIX: REGRESSION THEORY 83

No Selection Controls Selection Controls 

1 

(1) (2) (3) (4) (5) (6) 
School Avg. SAT Score/100 0.109 0.071 0.076 -0.021 -0.031 0.000

(0.026) (0.025) (0.016) (0.026) (0.026) (0.018)
Own SAT score/100 0.049 0.018 0.037 0.009 

(0.007) (0.006) (0.006) (0.006)
Predicted log(Parental Income) 0.187 0.161 

(0.024) (0.025)
Female -0.403 -0.396

(0.015) (0.014)
Black -0.023 -0.034

(0.035) (0.035)
Hispanic 0.015 0.006

(0.052) (0.053)
Asian 0.173 0.155

(0.036) (0.037)
Other/Missing Race -0.188 -0.193

(0.119) (0.116)
High School Top 10 Percent 0.061 0.063 

(0.018) (0.019)
High School Rank Missing 0.001 -0.009 

(0.024) (0.022)
Athlete 0.102 0.094

(0.025) (0.024)
Average SAT Score of 0.138 0.116 0.089 
Schools Applied To/100 (0.017) (0.015) (0.013) 
Sent Two Application 0.082 0.075 0.063 

(0.015) (0.014) (0.011)
Sent Three Applications 0.107 0.096 0.074

(0.026) (0.024) (0.022)
Sent Four or more Applications    0.153 0.143 0.106 

(0.031) (0.030) (0.025)
Note: Standard errors are shown in parentheses. The sample size is 14,238. 

Table 2.4: School Selectivity Effects: Average SAT Controls
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84 CHAPTER 2. MATCHING AND REGRESSION

Dependent Variable

1 

Own SAT score/100 Predicted log(Parental Income) 
(1) (2) (3) (4) (5) (6)

Private School 1.165 1.130 0.066 0.128 0.138 0.028
(0.196) (0.188) (0.112) (0.035) (0.037) (0.037)

Female  -0.367 0.016
(0.076) (0.013)

Black -1.947 -0.359
(0.079) (0.019)

Hispanic -1.185 -0.259
(0.168) (0.050)

Asian -0.014 -0.060
(0.116) (0.031)

Other/Missing Race -0.521 -0.082
(0.293) (0.061)

High School Top 10 Percent 0.948 -0.066 
(0.107) (0.011)

High School Rank Missing 0.556 -0.030 
(0.102) (0.023)

Athlete  -0.318 0.037
(0.147) (0.016)

Average SAT Score of 0.777 0.063
Schools Applied To/100 (0.058) (0.014) 
Sent Two Application 0.252 0.020

(0.077) (0.010)
Sent Three Applications 0.375 0.042

(0.106) (0.013)
Sent Four or more Applications 0.330 0.079

(0.093) (0.014)
Note: Standard errors are shown in parentheses. The sample size is 14,238. 

Table 2.5: Private School Effects: Omitted Variable Bias
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What Next?
 

• Regression always makes sense ... in the sense that it provides
best-in-class approximation to the CEF

• MFX from more elaborate non-linear models are usually
indistinguishable from the corresponding regression estimates

• We’re not always content to run regressions, of course, though this is
usually where we start

• Regression is our first line of attack on the identification problem; it’s
all about control

• If the regression you’ve got is not the one you want, that’s because
the underlying relationship is unsatisfactory

• Whats to be done with an unsatisfactory relationship?

• Move on, grasshopper ... to IV!

• But wait: we need some training first

27



MIT OpenCourseWare
http://ocw.mit.edu

14.387 Applied Econometrics: Mostly Harmless Big Data
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	Regression on a "need-to-know" basis
	Notation and background

	Details
	OVB

	LDVs
	Causal vs Casual
	What next?



