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1 Solving the FE

Now we make more assumptions on the primitives of the problem:
e X is a convex subset of R/,
e F'(z,y) is continuous and bounded,

e I is continuous and compact-valued.
Under these assumptions we analyze the functional equation

V(z) = max F(z,y)+ BV (y).
y€el(z)

Think of the right-hand side of this equation as a map
T:C(X)—-C(X),

where C (X)) is the space of bounded continuous functions f : X — R with the
sup norm. The map is defined as

Tf(z)= max F (z,y) +Bf (y).

yel(z)
Crucial observation:
f is a fixed point of T' <= f solves F'E.
Questions:
e How to show that a fixed point exists?
e Is the fixed point unique?

e How to find a fixed point?



1.1 An example (reaching the center)

Consider the following problem: an agent is located at some point zg € [—1,1].
The agent wants to reach point 0 but traveling is subject to convex costs.
Namely, traveling a distance d costs d?. Moreover, each period the agent pays
a cost D? for being at a distance D from point 0. The agent discounts payoffs
at the rate 5.

Let z; € [—1,1] denote the agent location at the beginning of the period.
Then the problem is to maximize

o0
38" (= o= wenn)? - a)
t=0

subject to

xy € [—1,1] for all ¢,

To given.

Suppose we focus on functions on [—1, 1] of the following form:

for some parameter A € R. We can restrict attention to A > 0 because the
objective funciton is non-positive.

Now solve
max — (¢ —y)° — o — fAy?
y€[-1,1]
first order condition yields
1
Y= 1y pa”

and substituting in the objective function yields

BA
<1+1+6A>m2.

Therefore the Bellman equation becomes

2 _ BA 2
—Ax® = <1+1+BA>x.

How can we make sure that the function on the left equals the function on the
right? Need:
BA

A:1+1+BA.

This has a unique solution A > 0.
We are going to prove it in a way that is much more complicated than
necessary, but very useful for what follows.



Define the function T': Ry — R4 as follows

TA) =1+ 1_?_1214.
Now we can prove the following:
Claim 1 (Contraction) For all A’, A”
T (A") =T (A)] < B|A" — A'[. (1)

Proof. Notice that

T'(A) = b 5 €[0,0] for all A.

(1+54)

and use the mean value theorem. m
This allows us to prove.

Claim 2 If T has fized point, the fixed point is unique.
Proof. Suppose there are two fixed points of T, say A’ and A”, then
A7 — | = [T (A") =T (4) < B| 4" — 4

which gives a contradiction. m

We also have a way to compute the fixed point A (again much more more
complicated than needed, but bear with me...) and thus prove existence.

Start at any Ag > 0 and iterate:

BAnfl
Ay =14 ———.
1+ 84,1
Now from (1) we have
|An - An—l‘ < 5 |An—1 - An—2| (2)

which implies that:
Claim 3 A, is a Cauchy sequence, so lim,, ., A, exists.

Proof. For any m > n

|Am_An| < |Am_Am71|+~-~+|An+1 _Anl <
< T+ B4+ BT Ansr — A, <
< (1=B) " Apgr — A S (1= 8) 71 B AL — Aol

The first follows from triangle inequality. The second from applying (2) itera-
tively on each term. The third from

T48+.. 48" " <Y pF=01-8"".

=0

The fourth from iterating on (2). So by choosing n we can make sure that
A, — Ayl <eforallm>n. m
This implies that A,, converges to some A.



Claim 4 If A =1lim, .. then A is a fived point of T'.
Proof. Notice that

IT(A)—Al < |T(A) = An| +]A— An| =
= |T(A)7T(An—1)|+|A7An|S/B|A7Am—l|+‘A7Am|

where the first follows from the triangle inequality, the second from the definition
of the sequence {4, }, the third from (2). Taking the limit as m — oo on the
last expression we get |1 (A) — A| = 0, which implies T (4A) = A. =

Summing up, using property (1), we have been able to:

e establish existence and uniqueness of solution;
e find a way of computing the solution.

Now we will see how to apply this idea to more general problems, where
instead of dealing with a one parameter family of functions on X, we are dealing
with a much larger set of functions, in particular the set of bounded continuous
functions C' (X).

Notice that the set of functions we looked at was a subset of C ([—1,1]).
Moreover, if fa (z) = —Ax? and fp (z) = —Bx? then

1fa— fsll = s [fa(z) — fB ()| = [A - B

ze[—1,

To find a fixed point we used the map T to search around the space R, (which
was indexing our space of functions), trying to make the distance between
each candidate function and the next smaller and smaller. That is, making
| fnt1 — fnll — 0. The same strategy can be adopted in general as long as we
are able to establish the analog of (1).

1.2 Applying the contraction mapping theorem
Define the distance between two functions f: X — R and g: X — R as

If () — g (@)]| = sup |f (z) — g (z)|.
reX

This is what it means to “use the sup norm” to compute the distance between
functions.
Consider the space

C(X)={f:X — R, [ is continuous on X and | f]| < oo}

Now we want to search for a solution to FE in this space by applying re-
peatedly the map T': C' (X) — C (X) (as we did in the example) where

Tf(z)= max F(z,y)+Bf(y)-

yel'(z

What do we need:



1. show that indeed T maps C (X) into C (X);

2. show that some version of condition (1) applies, i.e., that T is a contrac-
tion;

3. show that if T is a contraction we can use it to generate a Cauchy sequence
of functions {f,} in C (X) (starting at any fo);

4. make sure that this sequence converges to a function f in C (X).

For 1 we can use the theorem of the maximum (SLP: Theorem 3.6) and our
assumptions that F' is continuous and that I" is continuous and compact-valued.

For 2 we use Blackwell’s sufficient conditions (SLP: Theorem 3.3).

For 3 we can use the contraction mapping theorem (SLP: Theorem 3.2).

For 4 we use the fact that C (X) is a complete metric space.
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