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1 Solving the FE

Now we make more assumptions on the primitives of the problem:

� X is a convex subset of Rl,

� F (x; y) is continuous and bounded,

� � is continuous and compact-valued.

Under these assumptions we analyze the functional equation

V (x) = max
y2�(x)

F (x; y) + �V (y) :

Think of the right-hand side of this equation as a map

T : C (X)! C (X) ;

where C (X) is the space of bounded continuous functions f : X ! R with the
sup norm. The map is de�ned as

Tf (x) = max
y2�(x)

F (x; y) + �f (y) :

Crucial observation:

f is a �xed point of T () f solves FE:

Questions:

� How to show that a �xed point exists?

� Is the �xed point unique?

� How to �nd a �xed point?
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1.1 An example (reaching the center)

Consider the following problem: an agent is located at some point x0 2 [�1; 1].
The agent wants to reach point 0 but traveling is subject to convex costs.
Namely, traveling a distance d costs d2. Moreover, each period the agent pays
a cost D2 for being at a distance D from point 0. The agent discounts payo¤s
at the rate �.
Let xt 2 [�1; 1] denote the agent location at the beginning of the period.

Then the problem is to maximize

1X
t=0

�t
�
� (xt � xt+1)2 � x2t

�
subject to

xt 2 [�1; 1] for all t;
x0 given.

Suppose we focus on functions on [�1; 1] of the following form:

V (x) = �Ax2;

for some parameter A 2 R. We can restrict attention to A � 0 because the
objective funciton is non-positive.
Now solve

max
y2[�1;1]

� (x� y)2 � x2 � �Ay2

�rst order condition yields

y =
1

1 + �A
x

and substituting in the objective function yields

�
�
1 +

�A

1 + �A

�
x2:

Therefore the Bellman equation becomes

�Ax2 = �
�
1 +

�A

1 + �A

�
x2:

How can we make sure that the function on the left equals the function on the
right? Need:

A = 1 +
�A

1 + �A
:

This has a unique solution A � 0.
We are going to prove it in a way that is much more complicated than

necessary, but very useful for what follows.
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De�ne the function T : R+ ! R+ as follows

T (A) = 1 +
�A

1 + �A
:

Now we can prove the following:

Claim 1 (Contraction) For all A0; A00

jT (A00)� T (A0)j � � jA00 �A0j : (1)

Proof. Notice that

T 0 (A) =
�

(1 + �A)
2 2 [0; �] for all A:

and use the mean value theorem.
This allows us to prove.

Claim 2 If T has �xed point, the �xed point is unique.

Proof. Suppose there are two �xed points of T , say A0 and A00, then

jA00 �A0j = jT (A00)� T (A0)j � � jA00 �A0j

which gives a contradiction.
We also have a way to compute the �xed point A (again much more more

complicated than needed, but bear with me...) and thus prove existence.
Start at any A0 � 0 and iterate:

An = 1 +
�An�1

1 + �An�1
:

Now from (1) we have

jAn �An�1j � � jAn�1 �An�2j (2)

which implies that:

Claim 3 An is a Cauchy sequence, so limn!1An exists.

Proof. For any m > n

jAm �Anj � jAm �Am�1j+ :::+ jAn+1 �Anj �
�

�
1 + � + :::+ �m�n�1

�
jAn+1 �Anj �

� (1� �)�1 jAn+1 �Anj � (1� �)�1 �n jA1 �A0j :

The �rst follows from triangle inequality. The second from applying (2) itera-
tively on each term. The third from

1 + � + :::+ �m�n�1 <
1X
j=0

�j = (1� �)�1 :

The fourth from iterating on (2). So by choosing n we can make sure that
jAm �Anj < " for all m � n.
This implies that An converges to some A.
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Claim 4 If A = limn!1 then A is a �xed point of T .

Proof. Notice that

jT (A)�Aj � jT (A)�Anj+ jA�Anj =
= jT (A)� T (An�1)j+ jA�Anj � � jA�Am�1j+ jA�Amj

where the �rst follows from the triangle inequality, the second from the de�nition
of the sequence fAng, the third from (2). Taking the limit as m ! 1 on the
last expression we get jT (A)�Aj = 0, which implies T (A) = A.
Summing up, using property (1), we have been able to:

� establish existence and uniqueness of solution;

� �nd a way of computing the solution.

Now we will see how to apply this idea to more general problems, where
instead of dealing with a one parameter family of functions on X, we are dealing
with a much larger set of functions, in particular the set of bounded continuous
functions C (X).
Notice that the set of functions we looked at was a subset of C ([�1; 1]).

Moreover, if fA (x) = �Ax2 and fB (x) = �Bx2 then

kfA � fBk = sup
x2[�1;1]

jfA (x)� fB (x)j = jA�Bj :

To �nd a �xed point we used the map T to search around the space R+ (which
was indexing our space of functions), trying to make the distance between
each candidate function and the next smaller and smaller. That is, making
kfn+1 � fnk ! 0. The same strategy can be adopted in general as long as we
are able to establish the analog of (1).

1.2 Applying the contraction mapping theorem

De�ne the distance between two functions f : X ! R and g : X ! R as

kf (x)� g (x)k = sup
x2X

jf (x)� g (x)j :

This is what it means to �use the sup norm�to compute the distance between
functions.
Consider the space

C (X) = ff : X ! R; f is continuous on X and kfk <1g

Now we want to search for a solution to FE in this space by applying re-
peatedly the map T : C (X)! C (X) (as we did in the example) where

Tf (x) = max
y2�(x)

F (x; y) + �f (y) :

What do we need:
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1. show that indeed T maps C (X) into C (X);

2. show that some version of condition (1) applies, i.e., that T is a contrac-
tion;

3. show that if T is a contraction we can use it to generate a Cauchy sequence
of functions ffng in C (X) (starting at any f0);

4. make sure that this sequence converges to a function f in C (X).

For 1 we can use the theorem of the maximum (SLP: Theorem 3.6) and our
assumptions that F is continuous and that � is continuous and compact-valued.
For 2 we use Blackwell�s su¢ cient conditions (SLP: Theorem 3.3).
For 3 we can use the contraction mapping theorem (SLP: Theorem 3.2).
For 4 we use the fact that C (X) is a complete metric space.
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