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1 Showing that 7T is a contraction

1.1 Blackwell’s sufficient conditions

One important step in applying our argument to the map 7' is to show that T’
is a contraction.
Let C (X) be the space of bounded functions on X let ||.|| be the sup norm.

Take any map
T:C(X)—-C(X).

(This does not need to come from any optimization problem.)
Assume:

1. T is monotone, if f,g € C(X) and f(z) > g(z) for all z € X, then
Tf(x)>Tg(x) forall z € X.

2. T satisfies a “discounting” property: there is a § € (0, 1) such that for any
a >0 and any g € C (X) the function f (z) = g (z) + a satisfies

T(f (2) — g (@) < da.

Then T is a contraction.
To prove this let

a=sup |f(z) —g(z)] =|f - gl
zeX

Suppose without loss of generality that

sup |T'f (x) = Tg (z)| = sup (Tf () — Ty (x))
reX reX

(if this does not hold then it must be

sup |Tf (x) = Tg (z)| = sup (Tg (z) — T'f (x))
reX reX

and the same argument works with the roles of f and g reversed). Then let
h(xz) = g (z) + a. We have h(x) > f (z) for all 2 by definition. So

Tf(x)—Tg(z) <Th(z)—Tg(x)



from monotonicity and
Th(z)—Tg(x) < da

from discounting. Combining them we have
Tf(z)—Tg(x) < da
which implies

ITf =Tyl = sup |Tf (z) = Tg(z)| = sup (T'f (x) = Tg(x)) < da=5|f—gl.
reX zeX

1.2 Applying Blackwell’s conditions

Now we go back to our dynamic programming problem and show that T, defined

as
Tf(x) = max F(z,y)+ Bf (y)
yel(z)

is indeed a contraction. (Here we assume we already know that 7' maps bounded
continuous functions into bounded continuous functions).
To apply Blackwell’s theorem we need to check conditions 1 and 2.

1. To see that T is monotone suppose f > g. Take any x € X and suppose

y' € arg max F(z,y)+ Bg(y).
y€el(z)

Then

Jmax, F(z,y)+B8f(y) >

F(z,y)+B8f () >
F(z,y')+Bg(y)="Tg(x).

Tf(x)

(A\VARAYS

Since this holds for all z € X, we are done.

2. So see that T satisfies discounting notice that for any a > 0 is f (z) =
g(x)+a

Tf(x) = yrengé)F(w,y) +B(g(y) +a)=

{ max F (z,y) + By (y)} + Ba

yel(x)
= Tyg(z)+ Ba.

So discounting applies (with § = 3).



2 Inductive arguments

Using induction we can prove properties of the value function.
The general idea is to use the fact that our fixed point V' is the limit of T" f.
So if we start from a
JoeD

(fo satisfies D) and can prove that
TfeDif feD

(T preserves property D), then provided that D is a closed subset of our original
metric space C (X) then
VeD.

2.1 Proving that V' is monotone
Make all assumptions of bounded dynamic programming plus:

e F(z,y) is increasing in its first argument;

e I'(x) is monotone in the sense that

[(2)cT(z") if 2" >
Then V (z) is increasing in x.
Proof. We need to prove our induction step:
Tf is increasing if f is increasing.
We actually prove a stronger version:
Tf is increasing if f is non-decreasing. (1)
Pick an 2/, 2" € X with 2" > 2’ (with at least one >). Choose a

y' €arg max F(a',y)+f6f(y).
y€el(z’)

Then y' € T’ () by monotonicity of T', so

Tf(") = hax I (=" y) + Bf (y) = F (2",y") + Bf (y) >
> P y)+Bf(y)=Tf ("),
where the last inequality comes from the fact that F' is increasing. The space
of strictly increasing functions is not closed, but the space of non-decreasing
functions is closed (and is the closure of the space of increasing functions). So
since V' is the limit of T fy, we have V non-decreasing. Moreover

V=TV
and V is non-decreasing. So (1) implies that V' is increasing. QED.



2.2 Proving that V' is concave

Same idea: move in the space of concave functions.
Now the extra assumptions we need are:

o F(z,y) is concave;

e T'is a convex in the sense that if y' € T' () and y” € T' (2”) then

ay +(1—a)y” €T (az' + (1 —a)a”) for all a € [0,1].

Then V (z) is concave.
Proof. Again we need our inductive step. Suppose f (z) is concave. Take
any o', z"” € X and

y € arg max F(2',y)+Bf(y)
yel(z’)

y" € arg max F(2",y)+ Bf(y).
yel(z")
Take any « € [0,1] and let 2" = aa’ + (1 — &) 2”. Then
y/l/ — Oéyl + (1 _ O[) y// 6 1'\ (xlll)
by convexity of I'. So
max F(z",y) + B8f (y) > F (@, y") + Bf (") =

yEF(m”’)

a(F @ y)+Bf @)+ 1 —a)(F@"y")+8f ")
where the last inequality follows from the concavity of F' and f. So we have

Tf (") = alf(z') + (1 —a)Tf(z"),

showing that T'f is concave. Since the space of concave functions is closed, we
can start at any fy concave and we end up at V concave. Again, if needed
we can strengthen to strict concavity by making an extra step (like going from
weak to strong monotonicity). QED
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