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1 Euler equations

Consider a sequence problem with F' continuous differentiable, strictly concave
increasing in its first [ arguments (F, > 0). Suppose the state x; is a non-
negative vectors (X C R%).

Then we can use the Euler equation and a transversality condition to find
an optimum.

If a sequence {z}} satisfies 7, € intl' (z}) and

Fy (z},2741) + BFe (2741, 7149) =0 (1)
for all £, and the additional condition
: t * ok *
tlfgoﬁ Fy (xtaxt+1) ry =0 2)

then the sequence is optimal.
To prove it we first use concavity to show that for any feasible sequence {z;}
we have

F(zy,m41) < F (2f,27,0)+Fe (27, 27) (me — )+ F, (27, 271, (241 — 2741)

summing term by term for t = 1,..., T (discounting each term by ') yields

T

T
Y BF (wwen) <Y B(F (¢f, wf) + Fe (07, 2710) (@ — 1) + Fy (27, 2741) (w01 — 2741))
t=0 t=0

T
= ZBtF (27, 2541) + BTFy (27, 2711) (w041 — 2701)
t=0
T
= ZﬁtF (5(3:,3?;}1) + »3T+1Fy ($%+1’$§‘+2) (x*TJrl - xT+1)
t=0

T
¢ T+1
= Z»B F(27,2541) + 81 Fy (0741, ¥742) T4
=0

The second line follows from the fact that all the terms 3'F, (x5 27 41) (Teg1 — 25pq)
and T1E, (z711,%}4) (w41 — x7y1) cancel each other, by (1), and that zo =



x§ from feasibility. The third line follows from applying (1) one more time. The
last line follows from xp4; > 0 and F,, > 0.
Taking limits on both sides and using (2) shows that

ZﬂtF(wtvxt+l) < ZﬁtF (27, 2311) -
P

t=0

2 Local stability

We are now going to use conditions (1) and (2) to characterize optimal dynamics
around a steady state.
Suppose we find an z* such that z* € intl’ (z*) and

F, (z*,2) + BF, (2,2%) =0

then z* is a steady state, i.e. * = g (z*) (can you prove it?)
Suppose first that the problem is quadratic: F' (z,y) is a quadratic, strictly
concave function. So its derivatives are linear functions.

Fy(ze,mip1) = Fy(a",07) + Fyo - (20 —27) + Fyy - (3140 — 27)
Fp(rip1,2042) = BFy(a",27) + BF - (w441 — %) + BFoy - (X442 — 27)

Fyazzt + Fyyzt-i-l + BwaZt—i-l + ﬁmezt-&-Z =0

Assumption. The matrices Fy, and Fy, + Fyy + BFye + Fyy, are non-
singular.
Then we have the 2nd order difference equation

zepn =B Fy (Fyy + BFee) zes1 + B Fy) Fyaze (3)

We want to characterize the optimal dynamics using (1) and (2) as sufficient
conditions. So we ask the question: “given any zg = x¢p — x* can we find a
z1 = 1 — x* such that the sequence {z:} satisfies (3) with initial conditions
(20, 21) and lim;—, o0 2¢ = 07”7

If we find such a z; then z1 = ™ + z; must be equal to the optimal policy
g (zo) because the sequence {z* + 2 },- , satisfies the sufficient conditions for an
optimum (1) and (2). Moreover, since the problem is strictly concave x; must
be unique.

We can restate the problem in terms of the 1st order difference equation:

{ Zi42 } _ [ 5*1Fw—yl (Fyy + BFss) ﬁflp@lpyz } { Zt41 }
I

Zt4+1 0 2t
M
Now we are looking for a z; such that
M [ 1 :| — 0. (4)
20



Can this be true for more than one z;7 No otherwise we would have multiple
solutions. So the options are:

e there is a unique z; that satisfies (4). Then we have the policy z; =
g (zg) = 2* + z; and the optimal path from zy converges to x*.

e there is no z; that satisfies (4). Then we don’t have much information
on g (xo) but we know that there is no optimal path starting at zo that
converges to z*.

We will try to find conditions so that the first option applies.
We now leave aside dynamic programming for a moment and review useful
material on the general properties of difference equations.

2.1 Difference equations

General problem: characterize the limiting behavior of the sequence Z; = M*Z,
for some square matrix M and all possible initial conditions Z, € R?.
Useful result: given a square matrix M, it can be decomposed as

M = B~ 'AB

where A is a Jordan matriz and B is a non-singular matrix. The elements on
the diagonal of A are the solutions to

det( \[— M) =0

(some of them may be complex numbers). This is called the characteristic
equation of M and the expression on the right-hand side the characteristic
polynomial.

Then we can analyze the dynamics of the sequence W, = BZ;. Since B is
invertible, there is a one-to-one mapping between Z; and W, so all the properties
we can establish for {W;} translate into properties of {Z;}. Convergence is much
easier to analyze for the sequence W, because

W, = BZ, = BMu;_1 = BB~ '"ABu;_1 = Aw;_4
SO
w = Alwyg.

But the powers of a Jordan matrix A have nice limiting properties. The matrix
is made of diagonal blocks of the form

10 0
0 A 1 0
A=1 0 0 ) 0
0 0 0 0 X



and A} — 0 (a matrix of zeros) if [\;] < 1.

A simple example in R?. The difference equation is
Zy=MZ;;,

with M a 2 x 2 matrix. Suppose M has a real eigenvalue A with |A[ < 1 and
the associated eigenvector is Z. Then we have (by definition of eigenvalue and
eigenvector) X R

MZ =M\Z.
To find Z we need the following equation

M -M)Z=0

to have a solution different from zero, but this requires AI — M to be non-
singular, i.e. det (A — M) = 0. This shows why we find the A’s by solving the
characteristic equation.

Once we find A and Z = [¢1,Cs)" how can we use them to solve our original
problem? First remember that M has the form

w15 3]

I 0
for some numbers J and K. This means that ¢, cannot be zero. Otherwise
lel=l7 vllE]
G I 0 Ca

would give ¢; = ¢5/A = 0 and Z cannot be [0,0]" (by definition of eigenvector).
Now take any initial condition zy and set z; = (¢;/Cy) 20 so that [21, 29]” is

proportional to 7 i
2]-2¢
20 CQ CQ ] .

This means that we have found a z; such that [z, Zo]/ is an eigenvector of M.

Therefore _
|:Zt+1:|:Mt|:ZI:|:)\t Zl]—>0

2t 20 L <0

since |A| < 1.

In the next lecture we’ll see how to generalize this (using the Jordan decom-
position).
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