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1 Euler equations

Consider a sequence problem with F continuous di¤erentiable, strictly concave
increasing in its �rst l arguments (Fx � 0). Suppose the state xt is a non-
negative vectors (X � Rl+).
Then we can use the Euler equation and a transversality condition to �nd

an optimum.
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then the sequence is optimal.
To prove it we �rst use concavity to show that for any feasible sequence fxtg

we have
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summing term by term for t = 1; :::; T (discounting each term by �t) yields
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The second line follows from the fact that all the terms �tFy
�
x�t ; x

�
t+1

� �
xt+1 � x�t+1

�
and �t+1Fx

�
x�t+1; x

�
t+2

� �
xt+1 � x�t+1

�
cancel each other, by (1), and that x0 =
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x�0 from feasibility. The third line follows from applying (1) one more time. The
last line follows from xT+1 � 0 and Fx � 0.
Taking limits on both sides and using (2) shows that
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2 Local stability

We are now going to use conditions (1) and (2) to characterize optimal dynamics
around a steady state.
Suppose we �nd an x� such that x� 2 int� (x�) and

Fy (x
�; x�) + �Fx (x

�; x�) = 0

then x� is a steady state, i.e. x� = g (x�) (can you prove it?)
Suppose �rst that the problem is quadratic: F (x; y) is a quadratic, strictly

concave function. So its derivatives are linear functions.

Fy (xt; xt+1) = Fy (x
�; x�) + Fyx � (xt � x�) + Fyy � (xt+1 � x�)

Fx (xt+1; xt+2) = �Fy (x
�; x�) + �Fxx � (xt+1 � x�) + �Fxy � (xt+2 � x�)

Fyxzt + Fyyzt+1 + �Fxxzt+1 + �Fxyzt+2 = 0

Assumption. The matrices Fxy and Fyx + Fyy + �Fxx + �Fxy are non-
singular.
Then we have the 2nd order di¤erence equation

zt+2 = �
�1F�1xy (Fyy + �Fxx) zt+1 + �

�1F�1xy Fyxzt (3)

We want to characterize the optimal dynamics using (1) and (2) as su¢ cient
conditions. So we ask the question: �given any z0 = x0 � x� can we �nd a
z1 = x1 � x� such that the sequence fztg satis�es (3) with initial conditions
(z0; z1) and limt!1 zt = 0?�
If we �nd such a z1 then x1 = x� + z1 must be equal to the optimal policy

g (x0) because the sequence fx� + ztg1t=0 satis�es the su¢ cient conditions for an
optimum (1) and (2). Moreover, since the problem is strictly concave x1 must
be unique.
We can restate the problem in terms of the 1st order di¤erence equation:�
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Now we are looking for a z1 such that

M j
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z1
z0

�
! 0: (4)
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Can this be true for more than one z1? No otherwise we would have multiple
solutions. So the options are:

� there is a unique z1 that satis�es (4). Then we have the policy x1 =
g (x0) = x

� + z1 and the optimal path from x0 converges to x�.

� there is no z1 that satis�es (4). Then we don�t have much information
on g (x0) but we know that there is no optimal path starting at x0 that
converges to x�.

We will try to �nd conditions so that the �rst option applies.
We now leave aside dynamic programming for a moment and review useful

material on the general properties of di¤erence equations.

2.1 Di¤erence equations

General problem: characterize the limiting behavior of the sequence Zt =M tZ0
for some square matrix M and all possible initial conditions Z0 2 R2l.
Useful result: given a square matrix M , it can be decomposed as

M = B�1�B

where � is a Jordan matrix and B is a non-singular matrix. The elements on
the diagonal of � are the solutions to

det (�I �M) = 0

(some of them may be complex numbers). This is called the characteristic
equation of M and the expression on the right-hand side the characteristic
polynomial.
Then we can analyze the dynamics of the sequence Wt = BZt. Since B is

invertible, there is a one-to-one mapping between Zt andWt, so all the properties
we can establish for fWtg translate into properties of fZtg. Convergence is much
easier to analyze for the sequence Wt, because

Wt = BZt = BMut�1 = BB
�1�But�1 = �wt�1

so
wt = �

tw0:

But the powers of a Jordan matrix � have nice limiting properties. The matrix
is made of diagonal blocks of the form

�j =

266664
�j 1 0 ::: 0
0 �j 1 ::: 0
0 0 �j ::: 0
::: ::: ::: ::: 1
0 0 0 0 �j

377775
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and �tj ! 0 (a matrix of zeros) if j�j j < 1.

A simple example in R2. The di¤erence equation is

Zt =MZt�1;

with M a 2 � 2 matrix. Suppose M has a real eigenvalue � with j�j < 1 and
the associated eigenvector is Ẑ. Then we have (by de�nition of eigenvalue and
eigenvector)

MẐ = �Ẑ:

To �nd Ẑ we need the following equation

(�I �M)Z = 0

to have a solution di¤erent from zero, but this requires �I � M to be non-
singular, i.e. det (�I �M) = 0. This shows why we �nd the ��s by solving the
characteristic equation.
Once we �nd � and Ẑ = [�1; �2]

0 how can we use them to solve our original
problem? First remember that M has the form

M =

�
J K
I 0

�
for some numbers J and K. This means that �2 cannot be zero. Otherwise

�
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�1
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�
would give �1 = �2=� = 0 and Ẑ cannot be [0; 0]

0 (by de�nition of eigenvector).
Now take any initial condition z0 and set z1 = (�1=�2) z0 so that [z1; z0]

0 is
proportional to Ẑ: �

z1
z0

�
=
z0
�2

�
�1
�2

�
:

This means that we have found a z1 such that [z1; z0]
0 is an eigenvector of M .

Therefore �
zt+1
zt

�
=M t

�
z1
z0

�
= �t

�
z1
z0

�
! 0

since j�j < 1.

In the next lecture we�ll see how to generalize this (using the Jordan decom-
position).
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