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1 More on local stability

We now have the results needed to analyze local stability. From the 2nd order
difference equation

Zt4+2 = ﬁilFa:_yl (Fyy + BFa:a:) Zt+1 + BilFm_yleth.
We get the matrix

—1 —1 -

Suppose the eigenvalues on the diagonal of A\ are ordered from the smallest to
the largest (in absolute value). So, given zy, if we find a z; such that

Z1 _ w1
o[ %)= ]
for some w; € R' and the first [ eigenvalues have absolute value smaller than 1,
we have found a z; such that

Mj[zl}:BAj[wl]—m.
20 0

From this we construct a sequence z; = ( 1 0 )Mj ( Z1 20 )I that satisfy
Euler and transversality and we are done.

From
Bi1 Big z1 | _ | w1
By By 20 0o |’

By z1 + Bagzg = 0.

we need to solve

To do so we show that Bsj is invertible. Proceeding by contradiction, suppose
not. Then By is singular and there is a Z; # 0 such that

Bs1zZ1 = 0.



But then
% %1(4)-[3]
By Boo 0 0
for some W, € R'. This means that z; = 2* 4 2, # z* is optimal from the initial
condition zg = z* + 0 = x*. This contradicts the fact that =* is a steady state
and g (z*) = z* (the policy is unique by strict concavity).

We have all the crucial steps for the following theorem. But first let us
remember our assumptions.

Assumption 1. The payoff function F (x,y) is quadratic and strictly con-
cave. The feasible set is a conver set X C Rl+, the constraint correspondence
T (z) is continuous.

Assumption 2. The matrices Fy,y and Fy, + Fyy + BFyy + BFyy, are non-
singular.

Assumption 3. The steady state

Tt = (Fyx+Fyy+BFw+ﬁFa:y)_l (Fy (0,0) + BF; (0,0))

is interior, x* € intl (x*), and satisfies F > 0.
Assumption 4. The matriz M defined in (1) has 1 eigenvalues smaller
than 1 in absolute value.

Theorem 1 Under assumptions 1 to 4, there is a neighborhood I of x* where
the policy is given by

g(x) = 2" — By' Bag (x — %) .

The optimal sequence converges to the steady state x* for any initial condition
xg €1.

Proof. All the steps before tell us that given any initial condition zg € R' there
is a sequence {z}};°, that satisfies the Euler equation at each ¢ and converges to
x*. By choosing x( sufficiently close to * we can ensure that =} € intI’ (ac;il)
and F, (332‘ , Ty +1) > 0 for all ¢ (make sure you know how to make this step more
formal).

To complete the proof we use the argument in the last set of lecture notes
showing that the Euler equation and the transversality condition are sufficient
for an optimum. The Euler equation is satisfied by construction. The transver-
sality condition holds because

lim B'F, (z},27,,) v = lim B'F, (z*,2%) 2" = 0.

t—oo t—o0
Notice one small wrinkle: in last set of notes we assumed F, > 0 everywhere,
but fortunately the argument goes through if we only have F, (wf ,XF +1) >0
along our candidate sequence {z}},~,. (Notice that a quadratic objective rules
out F, > 0 everywhere, so we can’t hope to use that argument). So the Euler
equation and transversality are sufficient to show that {xz},°, is optimal. m



Notice that if X = R! and I'(z) = R for all z, it is possible to prove
that the preceding characterization of a quadratic problem holds globally, not
only locally (proving it is a bit more involved that what it seems from reading

SLP, because the transversality condition we are using here does not work when
X =RY.

1.1 The general nonlinear case

It was ok to restrict attention to local arguments in the quadratic case because
we want to use the quadratic case as a step towards local characterization of
steady states in the general case where the objective is possibly non-quadratic
and so the policy is possibly non-linear. We now make the following assump-
tions, that generalize our previous set of assumptions.

Assumption 1. The payoff function F (x,y) is twice continuously dif-
ferentiable and strictly concave. The feasible set is X C Rﬂr, the constraint
correspondence I' (x) is continuous.

Assumption 2. There is an x* € X that satisfies F, (x*,2*) > 0, a* €
intl (z*) and

Fy(z*,2") + fF, («*,2") = 0.

Assumption 3. The matrices Fyy and Fy, + Fyy + BF,. + BFyy, evaluated
at (z*,2*), are non-singular at the steady state.

Assumption 4. The matrizx M, evaluated at (z*,z*), has | eigenvalues
smaller than 1 in absolute value.

Theorem 2 Under assumptions 1 to 4, there is a neighborhood T of x* such that
the optimal sequence converges to the steady state x* for any initial condition
xo €Z.

Proof (sketch). The idea here is to use the implicit function theorem to find
a function h (z,y) which solves the Euler equation

Fy(xz,y)+ BF, (y,h(z,y)) =0

for all (z,y) in a neighborhood of (z*,2*). The difference equation then is

Tevo | _ | h(@e, Te41)
e

Ti+1 Ti+1

and the Jacobian of the map on the right is

hi hy ] _ [ BEL (Fyy + BFaw) B 'Fp Fie
I 0 I 0 '

Then using general local characterization of non-linear difference equations
(Thm 6.6) we can find a neighborhood U of (z*,2*) and a continuously differ-
entiable function ¢ (x¢, x441) such that if ¢ (xg,x1) = 0 and x40 = h (T4, Ti41)
for all ¢ > 1 then lim; .o, x; = x*. With a step analogous to the linear case we
can show that for all x¢ there is a x; that satisfies ¢ (zo,z1) = 0 and choose the
neighborhood small enough that all z; are in the interior of the constraint set
and have F, > 0. m
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