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1 Continuous time: �nite horizon

Time goes from 0 to T . Instantaneous payo¤:

f (t; x (t) ; y (t)) ;

(the time dependence includes discounting), where x (t) 2 X and y (t) 2 Y .
Constraint:

_x (t) = g (t; x (t) ; y (t)) : (1)

Relative to discrete time, we are now using the state variable/control variable
approach (x is the state, y is the control). We assume throughout that f and g
are continuously di¤erentiable functions.
Problem is to choose the functions x (:) and y (:) to maximizeZ T

0

f (t; x (t) ; y (t)) dt

subject to constraint (1) for each t 2 [0; T ] and the initial condition: x (0) given.
We will use two approaches, a variational approach and a dynamic programming
approach. Both approaches will be used as heuristic arguments for the Principle
of Optimality.

1.1 Variational approach

1.1.1 Necessity argument

Suppose you know that optimal x� (t) and y� (t) exist and are interior for each
t. We use a variational approach to derive necessary conditions for optimality.
Take any continuous function h (t) and let

y (t; ") = y� (t) + "h (t) :

To obtain the perturbed version of x, solve the di¤erential equation

_x (t; ") = g (t; x (t; ") ; y (t; ")) (2)
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with initial condition x (0; ") = x (0). For j"j small enough both y (t; ") and
x (t; ") are, respectively, in Y and X.
Optimality implies that

W (") �
Z T

0

f (t; x (t; ") ; y (t; ")) dt �
Z T

0

f (t; x� (t) ; y� (t)) dt =W (0)

for all " in a neighborhood of 0, and, supposing, W is di¤erentiable this implies

W 0 (0) = 0:

Moreover, (2) implies that

W (") =

Z T

0

f (t; x (t; ") ; y (t; ")) dt+

Z T

0

� (t) [g (t; x (t; ") ; y (t; "))� _x (t; ")] dt

for any continuous function � (t). Integrating by parts, this can be rewritten as

W (") =

Z T

0

[f (t; x (t; ") ; y (t; ")) + � (t) g (t; x (t; ") ; y (t; "))] dt+

�� (T )x (T; ") + � (0)x (0; ") +
Z T

0

_� (t)x (t; ") dt

Suppose we can di¤erentiate x (t; ") and y (t; "), we have that

W 0 (") =

Z T

0

h
fx (t; x (t; ") ; y (t; ")) + � (t) gx (t; x (t; ") ; y (t; ")) + _� (t)

i
x" (t; ") dt

+

Z T

0

[fy (t; x (t; ") ; y (t; ")) + � (t) gy (t; x (t; ") ; y (t; "))] y" (t; ") dt

�� (T )x" (T; ")

(given that x (0; ") = x (0)). Now we will choose the function � so that all the
derivatives x" (T; ") (which are hard to compute since they involve the di¤eren-
tial equation (2)) vanish.
In particular set � (T ) = 0 and let � (t) solve the di¤erential equation

_� (t) = �fx (t; x� (t) ; y� (t))� � (t) gx (t; x� (t) ; y� (t)) :

Moreover y" (t; ") = h (t) so putting together our results we have:

W 0 (0) =

Z T

0

[fy (t; x
� (t) ; y� (t)) + � (t) gy (t; x

� (t) ; y� (t))]h (t) dt = 0:

Since this must be true for any choice of h (t) it follows that a necessary condition
for this to be satis�es is

fy (t; x
� (t) ; y� (t)) + � (t) gy (t; x

� (t) ; y� (t)) = 0:

We can summarize this result de�ning the Hamiltonian

H (t; x (t) ; y (t) ; � (t)) = f (t; x (t) ; y (t)) + � (t) g (t; x (t) ; y (t)) ;

and we have the following:
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Theorem 1 If x� and y� are optimal, continuous and interior then there exists
a continuously di¤erentiable function � (t) such that

Hy (t; x
� (t) ; y� (t) ; � (t)) = 0 (3)

_� (t) = �Hx (t; x� (t) ; y� (t) ; � (t)) (4)

_x� (t) = H� (t; x
� (t) ; y� (t) ; � (t)) (5)

and � (T ) = 0.

1.1.2 Su¢ ciency argument

Now suppose we have found candidate solutions x� (t) and y� (t) which satisfy
(3)-(5) for some continuous function � (:). We want to check if these condi-
tions are su¢ cient for an optimum. For this, we need an additional concavity
assumption.
Let

M (t; x (t) ; � (t)) = max
y
H (t; x (t) ; y; � (t)) (6)

and suppose that M is concave in x.
Consider any other feasible path x (t) and y (t). Then

f (t; x (t) ; y (t)) + �g (t; x (t) ; y (t)) �
M (t; x (t) ; � (t)) �M (t; x� (t) ; � (t)) +Mx (t; x

� (t) ; � (t)) (x (t)� x� (t))

or

f (t; x (t) ; y (t)) + � (t) g (t; x (t) ; y (t)) �
f (t; x� (t) ; y� (t)) + � (t) g (t; x� (t) ; y� (t)) +Mx (t; x

� (t) ; � (t)) (x (t)� x� (t))

Now
Mx (t; x

� (t) ; � (t)) = Hx (t; x
� (t) ; y� (t) ; � (t)) = � _� (t)

the �rst from an envelope argument, and the second from (4). So we have

f (t; x (t) ; y (t)) � f (t; x� (t) ; y� (t)) + � (t) ( _x� (t)� _x (t)) + _� (t) (x� (t)� x (t))
(7)

Integrating by parts and using � (T ) = 0 and x (0) = x� (0) we haveZ T

0

f (t; x (t) ; y (t)) dt �
Z T

0

f (t; x� (t) ; y� (t)) dt:

We have thus proved a converse to Theorem 1:

Theorem 2 If x� and y� are two continuous functions that satisfy (3)-(5)
for some continuous function � (:) with � (T ) = 0, X is a convex set and
M (t; x; � (t)) is concave in x for all t 2 [0; T ] then x� and y� are optimal.
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1.2 Dynamic programming

We now use a di¤erent approach to characterize the same problem.
De�ne the value function (sequence problem):

V (t; x (t)) = max
x;y

Z T

t

f (t; x (�) ; y (�)) d�

s:t: _x (�) = g (� ; x (�) ; y (�))

x (t) given

The principle of optimality can be applied to obtain

V (t; x (t)) = max
x;y

�Z s

t

f (� ; x (�) ; y (�)) d� + V (s; x (s))

�
s:t: _x = g (� ; x (�) ; y (�)) and x (t) given

rewrite the maximization problem as

max
x;y

�Z s

t

f (� ; x (�) ; y (�)) d� + V (s; x (s))� V (t; x (t))
�
= 0

and taking limits we have

lim
s!t

1

s� t maxx;y

�Z s

t

f (� ; x (�) ; y (�)) d� + V (s; x (s))� V (t; x (t))
�
= 0

Suppose now that: (1) we can invert taking the limit and taking the maxi-
mum, and (2) V is di¤erentiable w.r.t. to both arguments. Then we obtain

max
y

n
f (t; x (t) ; y (t)) + _V (t; x (t)) + Vx (t; x (t)) _x (t)

o
= 0

and

max
y
ff (t; x (t) ; y (t)) + Vx (t; x (t)) g (t; x (t) ; y (t))g+ _V (t; x (t)) = 0 (8)

This is the Hamilton-Jacobi-Bellman equation.
We can use it to derive the Maximum Principle conditions once more. Given

an optimal solution x�; y� just identify

� (t) = Vx (t; x
� (t)) (9)

and we immediately have that y� (t) must maximize the Hamiltonian:

max
y
ff (t; x� (t) ; y) + � (t) g (t; x� (t) ; y)g :

We can also get the condition for � (t) (4) assuming V is twice di¤erentiable.
Di¤erentiating both sides of (9) yields

_� (t) = Vx;t (t; x
� (t)) + Vx;x (t; x

� (t)) _x� (t)
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Di¤erentiating (8) with respect to x (t) (which can be done because the condi-
tion holds for all possible x (t) not just the optimal one, we are using a value
function!) and using an envelope argument we get

fx (t; x (t) ; y (t))+Vx (t; x (t)) gx (t; x (t) ; y (t))+Vx;x (t; x (t)) g (t; x (t) ; y (t))+Vt;x (t; x (t)) = 0

Combining the two (at the optimal path) yields

fx (t; x
� (t) ; y� (t)) + � (t) gx (t; x

� (t) ; y� (t)) + _� (t) = 0

which implies (4).

2 In�nite Horizon

The problem now is to maximizeZ 1

0

f (t; x (t) ; y (t))

subject to
_x (t) = g (t; x (t) ; y (t))

an initial condition x (0) and a terminal condition

lim
t!1

b (t)x (t) = 0

where b (t) is some given function b : R+ ! R+.
Going to in�nite horizon the Maximum Principle still works, but we need

to add some conditions at 1 (to replace the condition � (T ) = 0 we were using
above).

2.1 Su¢ ciency argument

Let us go in reverse now and look �rst for su¢ cient conditions for an optimum.
Suppose we have a candidate path x� (t) ; y� (t) that satis�es conditions (3)-(5)
for some continuous function � and the function M de�ned in (6) is concave.
We can compare the candidate path with any other feasible path as in the proof
of Theorem 2, however at the moment of integrating by parts (7) we are left
with the following expression:Z 1

0

f (t; x (t) ; y (t)) dt �
Z 1

0

f (t; x� (t) ; y� (t)) dt+ lim
t!1

� (t) (x� (t)� x (t)) :

If we assume that limt!1 � (t)x
� (t) = 0 and limt!1 � (t)x (t) � 0 for all

feasible paths x (t) we then haveZ 1

0

f (t; x (t) ; y (t)) dt �
Z 1

0

f (t; x� (t) ; y� (t)) dt:

This proves the following.
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Theorem 3 Suppose x� and y� are two continuous functions that satisfy (3)-
(5) for some continuous function � (:), X is a convex set and M (t; x; � (t)) is
concave in x for all t and the following two conditions are satis�ed

lim
t!1

� (t)x� (t) = 0 (transversality condition) (10)

and
lim
t!1

� (t)x (t) � 0 for all feasible paths x (t) : (11)

Then x� and y� are optimal. If M (t; x; � (t)) is strictly concave in x then x�

and y� are the unique optimal solution.

We have thus established that the transversality condition (10) (together
with concavity and our usual optimality conditions) is su¢ cient.

2.2 Necessity

Proving that some transversality condition is necessary is more cumbersome and
requires additional assumptions (although, clearly, when we deal with necessary
conditions we don�t need concavity). The general idea is the following. Use the
HBJ equation (8) to show that

_V (t; x� (t)) = �H (t; x� (t) ; y� (t) ; � (t)) :

If you can argue that limt!1 _V (t; x� (t)) = 0 then you have the transversality
condition

lim
t!1

H (t; x� (t) ; y� (t) ; � (t)) = 0:

Under additional conditions (e.g. if x� (t) converges to a steady state level)
then this condition implies (10). (See Theorems 7.12 and 7.13 in Acemoglu
(2009)). However, in applications it is often more useful to use the transversality
condition as a su¢ cient condition (as in Theorem 3 and in Theorem 7.14 in
Acemoglu (2009)).

3 Discounting

The problem now is to maximizeZ 1

0

e��tf (x (t) ; y (t))

subject to
_x (t) = g (t; x (t) ; y (t))

an initial condition x (0) and a terminal condition

lim
t!1

b (t)x (t) = 0
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where b (t) is some given function b : R+ ! R+.
First, notice that the Hamiltonian would be

H (t; x (t) ; y (t) ; � (t)) = e��tf (x (t) ; y (t)) + � (t) g (t; x (t) ; y (t))

but de�ning � (t) = e�t� (t) we can de�ne the current-value Hamiltonian

~H (x (t) ; y (t) ; � (t)) = f (x (t) ; y (t)) + � (t) g (t; x (t) ; y (t))

(so that H = e��t ~H, so H is also called present-value Hamiltonian).
Therefore, conditions (3)-(5) become

~Hy (t; x
� (t) ; y� (t) ; � (t)) = 0

_� (t) = �� (t)� ~Hx (t; x
� (t) ; y� (t) ; � (t))

_x� (t) = ~H� (t; x
� (t) ; y� (t) ; � (t)) :

The limiting conditions (10) and (11) become

lim
t!1

e��t� (t)x� (t) = 0 (transversality condition)

and
lim
t!1

e��t� (t)x (t) � 0 for all feasible paths x (t) :

All the results above go through and we just express them using di¤erent
variables.
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