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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics 

Review of the Discrete-Time Solow Model 

Per capita capital stock evolves according to 

k (t + 1) = sf (k (t)) + (1 − δ) k (t) . 

The steady-state value of the capital-labor ratio k∗ is given by 

f (k∗) 
k∗ 

= 
δ 
s 
. 

Consumption is given by 

(1) 

(2) 

C (t) = (1 − s) Y (t) (3) 

And factor prices are given by 

R (t) = f � (k (t)) > 0 and 

w (t) = f (k (t)) − k (t) f � (k (t)) > 0. (4) 
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics 

Steady State Equilibrium
 

Courtesy of Princeton University Press. Used with permission. 
Figure 2.2 in Acemoglu, Daron. Introduction to Modern Economic Growth. 
Princeton, NJ: Princeton University Press, 2009. ISBN: 9780691132921.

Figure: Steady-state capital-labor ratio in the Solow model. 
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics 

Transitional Dynamics
 

Equilibrium path: not simply steady state, but entire path of capital 
stock, output, consumption and factor prices. 

In engineering and physical sciences, equilibrium is point of rest of 
dynamical system, thus the steady state equilibrium. 
In economics, non-steady-state behavior also governed by optimizing 
behavior of households and firms and market clearing. 

Need to study the “transitional dynamics” of the equilibrium 
difference equation (1) starting from an arbitrary initial capital-labor 
ratio k (0) > 0. 

Key question: whether economy will tend to steady state and how it 
will behave along the transition path. 
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics 

Transitional Dynamics: Review I 

Consider the nonlinear system of autonomous difference equations, 

x (t + 1) = G (x (t)) ,	 (5) 

x (t) ∈ Rn and G : Rn → Rn .

Let x∗ be a fixed point of the mapping G ( ), i.e.,
·

x∗ = G (x∗) . 

x∗ is sometimes referred to as “an equilibrium point” of (5). 
We will refer to x∗ as a stationary point or a steady state of (5). 

Definition	 A steady state x∗ is (locally) asymptotically stable if there 
exists an open set B (x∗) � x∗ such that for any solution 
{x (t)}t 

∞ 
=0 to (5) with x (0) ∈ B (x∗), we have x (t) x∗.→

Moreover, x∗ is globally asymptotically stable if for all 
x (0) ∈ Rn, for any solution {x (t)} ∞ 

=0, we have x (t) x∗.t → 

Daron Acemoglu (MIT) Economic Growth Lecture 2 October 29, 2009. 5 / 68 



Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics 

Transitional Dynamics: Review II
 

Simple Result About Stability 

Let x (t) , a, b ∈ R, then the unique steady state of the linear 
difference equation x (t + 1) = ax (t) + b is globally asymptotically 
stable (in the sense that x (t) → x∗ = b/ (1 − a)) if |a| < 1. 

Suppose that g : R R is differentiable at the steady state x∗,→
defined by g (x∗) = x∗. Then, the steady state of the nonlinear 
difference equation x (t + 1) = g (x (t)), x∗, is locally asymptotically 
stable if |g � (x∗)| < 1. Moreover, if |g � (x)| < 1 for all x ∈ R, then 
x∗ is globally asymptotically stable. 
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics 

Transitional Dynamics in the Discrete Time Solow Model
 

Proposition	 Suppose that Assumptions 1 and 2 hold, then the 
steady-state equilibrium of the Solow growth model 
described by the difference equation (1) is globally 
asymptotically stable, and starting from any k (0) > 0, k (t) 
monotonically converges to k∗. 
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics 

Proof of Proposition: Transitional Dyamics I
 

Let g (k) ≡ sf (k) + (1 − δ) k. First observe that g � (k) exists and is 
always strictly positive, i.e., g � (k) > 0 for all k. 

Next, from (1), 
k (t + 1) = g (k (t)) , (6) 

with a unique steady state at k∗. 

From (2), the steady-state capital k∗ satisfies δk∗ = sf (k∗), or 

k∗ = g (k∗) . (7) 

Recall that f ( ) is concave and differentiable from Assumption 1 and ·
satisfies f (0) ≥ 0 from Assumption 2. 
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics 

Proof of Proposition: Transitional Dyamics II
 

For any strictly concave differentiable function,
 

f (k) > f (0) + kf � (k) ≥ kf � (k) , (8)
 

The second inequality uses the fact that f (0) ≥ 0. 

Since (8) implies that δ = sf (k∗) /k∗ > sf � (k∗), we have 
g � (k∗) = sf � (k∗) + 1 − δ < 1. Therefore,
 

g � (k∗) ∈ (0, 1) .
 

The Simple Result then establishes local asymptotic stability. 
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics 

Proof of Proposition: Transitional Dyamics III
 

To prove global stability, note that for all k (t) ∈ (0, k∗),
 

k (t + 1) − k∗ = g (k (t)) − g (k∗)
 � k ∗ 

= − 
k (t) 

g � (k) dk , 

< 0 

First line follows by subtracting (7) from (6), second line uses the 
fundamental theorem of calculus, and third line follows from the 
observation that g � (k) > 0 for all k. 
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics 

Proof of Proposition: Transitional Dyamics IV 

Next, (1) also implies 

k (t + 1) − k (t) 
k (t) 

= 
f (k (t)) 
s − δ
k (t) 

> 
f (k∗)
s − δ
k∗ 

= 0, 

Second line uses the fact that f (k) /k is decreasing in k (from (8)
 
above) andlast line uses the definition of k∗.
 
These two arguments together establish that for all k (t) ∈ (0, k∗),
 
k (t + 1) ∈ (k (t) , k∗).
 
An identical argument implies that for all k (t) > k∗,
 

k (t + 1) ∈ (k∗, k (t)).
 

Therefore, {k (t)} ∞ 

=0 monotonically converges to k
∗ and is globally
t 

stable. 
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics 

Transitional Dynamics in the Discrete Time Solow Model 

Stability result can be seen diagrammatically in the Figure: 

Starting from initial capital stock k (0) < k∗, economy grows towards 
k∗, capital deepening and growth of per capita income. 
If economy were to start with k � (0) > k∗, reach the steady state by 
decumulating capital and contracting. 

Proposition	 Suppose that Assumptions 1 and 2 hold, and k (0) < k∗, 
then {w (t)} ∞ 

=0 is an increasing sequence and {R (t)} ∞ 
=0 ist	 t 

a decreasing sequence. If k (0) > k∗, the opposite results 
apply. 

Thus far Solow growth model has a number of nice properties, but no 
growth, except when the economy starts with k (0) < k∗. 
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics 

Transitional Dynamics in Figure
 

Courtesy of Princeton University Press. Used with permission. 
Figure 2.7 in Acemoglu, Daron. Introduction to Modern Economic Growth. 
Princeton, NJ: Princeton University Press, 2009. ISBN: 9780691132921. 
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Figure: Transitional dynamics in the basic Solow model. 
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The Solow Model in Continuous Time Towards Continuous Time 

From Difference to Differential Equations I
 

Start with a simple difference equation
 


x (t + 1) − x (t) = g (x (t)) . (9)
 


Now consider the following approximation for any Δt ∈ [0, 1] ,
 


x (t + Δt) − x (t) � Δt g (x (t)) ,

· 

When Δt = 0, this equation is just an identity. When Δt = 1, it gives 
(9).


In-between it is a linear approximation, not too bad if
 

g (x) � g (x (t)) for all x ∈ [x (t) , x (t + 1)]
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The Solow Model in Continuous Time Towards Continuous Time 

From Difference to Differential Equations II
 

Divide both sides of this equation by Δt, and take limits 

lim 
x (t + Δt) − x (t)

= ẋ (t) � g (x (t)) , (10)
Δt 0 Δt→

where 

ẋ (t) ≡ 
dx (t) 
dt 

Equation (10) is a differential equation representing (9) for the case 
in which t and t + 1 is “small”. 
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The Solow Model in Continuous Time Steady State in Continuous Time 

The Fundamental Equation of the Solow Model in 
Continuous Time I 

Nothing has changed on the production side, so (4) still give the 
factor prices, now interpreted as instantaneous wage and rental rates. 

Savings are again 
S (t) = sY (t) , 

Consumption is given by (3) above. 

Introduce population growth, 

L (t) = exp (nt) L (0) . (11) 

Recall 

k (t) ≡ 
K
L (
(

t
t
)

) 
, 
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The Solow Model in Continuous Time Steady State in Continuous Time 

The Fundamental Equation of the Solow Model in 
Continuous Time II 

Implies 

k̇ (t) K̇ (t) L̇ (t) 
k (t)

= 
K (t) 

− 
L (t) 

, 

K̇ (t) 
= 

K (t) 
− n. 

From the limiting argument leading to equation (10), 

K̇ (t) = sF [K (t) , L (t) , A(t)] − δK (t) . 

Using the definition of k (t) and the constant returns to scale 
properties of the production function, 

k̇ (t) f (k (t)) 
k (t)

= s
k (t) 

− (n + δ) , (12) 
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The Solow Model in Continuous Time Steady State in Continuous Time 

The Fundamental Equation of the Solow Model in 
Continuous Time III 

Definition	 In the basic Solow model in continuous time with population 
growth at the rate n, no technological progress and an initial 
capital stock K (0), an equilibrium path is a sequence of 
capital stocks, labor, output levels, consumption levels, 
wages and rental rates 

∞[K (t) , L (t) , Y (t) , C (t) , w (t) , R (t)]t =0 such that L (t) 
satisfies (11), k (t) ≡ K (t) /L (t) satisfies (12), Y (t) is 
given by the aggregate production function, C (t) is given by 
(3), and w (t) and R (t) are given by (4). 

As before, steady-state equilibrium involves k (t) remaining constant 
at some level k∗. 
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The Solow Model in Continuous Time Steady State in Continuous Time 

Steady State With Population Growth
 

Courtesy of Princeton University Press. Used with permission. 
Figure 2.8 in Acemoglu, Daron. Introduction to Modern Economic Growth. 
Princeton, NJ: Princeton University Press, 2009. ISBN: 9780691132921. 

Figure: Investment and consumption in the steady-state equilibrium with 
population growth. 
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The Solow Model in Continuous Time Steady State in Continuous Time 

Steady State of the Solow Model in Continuous Time 

Equilibrium path (12) has a unique steady state at k∗, which is given 
by a slight modification of (2) above: 

f (k∗) n + δ 
= .	 (13)

k∗ s 

Proposition	 Consider the basic Solow growth model in continuous time 
and suppose that Assumptions 1 and 2 hold. Then there 
exists a unique steady state equilibrium where the 
capital-labor ratio is equal to k∗ ∈ (0, ∞) and is given by 
(13), per capita output is given by 

y ∗ = f (k∗) 

and per capita consumption is given by 

c∗ = (1 − s) f (k∗) . 
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The Solow Model in Continuous Time Steady State in Continuous Time 

Steady State of the Solow Model in Continuous Time II 

Moreover, again defining f (k) = af̃  (k) , we obtain: 

Proposition	 Suppose Assumptions 1 and 2 hold and f (k) = af̃  (k). 
Denote the steady-state equilibrium level of the capital-labor 
ratio by k∗ (a, s, δ, n) and the steady-state level of output by 
y ∗ (a, s, δ, n) when the underlying parameters are given by a, 
s and δ. Then we have 

∂k∗ ( ) ∂k∗ ( ) ∂k∗ ( ) ∂k∗ ( )·
> 0, 

·
> 0, 

·
< 0 and 

·
< 0 

∂a ∂s ∂δ ∂n 
∂y ∗ ( ) ∂y ∗ ( ) ∂y ∗ ( ) ∂y ∗ ( )·

> 0, 
·
> 0, 

·
< 0and 

·
< 0. 

∂a ∂s ∂δ ∂n 

New result is higher n, also reduces the capital-labor ratio and output 
per capita. 

means there is more labor to use capital, which only accumulates 
slowly, thus the equilibrium capital-labor ratio ends up lower. 
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Transitional Dynamics in the Continuous Time Solow Model Dynamics in Continues Time 

Transitional Dynamics in the Continuous Time Solow 
Model I 

Simple Result about Stability In Continuous Time Model 

Let g : R R be a differentiable function and suppose that there →
exists a unique x∗ such that g (x∗) = 0. Moreover, suppose g (x) < 0 
for all x > x∗ and g (x) > 0 for all x < x∗. Then the steady state of 
the nonlinear differential equation ẋ (t) = g (x (t)), x∗, is globally 
asymptotically stable, i.e., starting with any x (0), x (t) x∗.→ 
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mics of the ital-labor ratio in the basic Solow model.

Transitional Dynamics in the Continuous Time Solow Model Dynamics in Continues Time 

Simple Result in Figure
 

k(t)

f(k(t))

k(t)

k(t)
s –(δ+g+n)

k*
0 k(t)

Courtesy of Princeton University Press. Used with permission. 
Figure 2.9 in Acemoglu, Daron. Introduction to Modern Economic Growth. 
Princeton, NJ: Princeton University Press, 2009. ISBN: 9780691132921. 
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Transitional Dynamics in the Continuous Time Solow Model Dynamics in Continues Time 

Transitional Dynamics in the Continuous Time Solow 
Model II 

Proposition	 Suppose that Assumptions 1 and 2 hold, then the basic
 

Solow growth model in continuous time with constant
 

population growth and no technological change is globally
 

asymptotically stable, and starting from any k (0) > 0,
 

k (t) k∗.

→ 

Proof: Follows immediately from the Theorem above by noting 
whenever k < k∗, sf (k) − (n + δ) k > 0 and whenever k > k∗, 
sf (k) − (n + δ) k < 0. 

Figure: plots the right-hand side of (12) and makes it clear that 
whenever k < k∗, k̇ > 0 and whenever k > k∗, k̇ < 0, so k 
monotonically converges to k∗. 
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Transitional Dynamics in the Continuous Time Solow Model Cobb-Douglas Example 

Dynamics with Cobb-Douglas Production Function I 

Return to the Cobb-Douglas Example 

F [K , L, A] = AK αL1−α with 0 < α < 1. 

Special, mainly because elasticity of substitution between capital and 
labor is 1. 

Recall for a homothetic production function F (K , L), the elasticity of 
substitution is � �

∂ ln (FK /FL) 
−1 

σ ≡ − 
∂ ln (K /L) 

, (14) 

F is required to be homothetic, so that FK /FL is only a function of 
K /L. 
For the Cobb-Douglas production function
 

FK /FL = (α/ (1 − α)) (L/K ), thus σ = 1.

· 
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Transitional Dynamics in the Continuous Time Solow Model Cobb-Douglas Example 

Dynamics with Cobb-Douglas Production Function II 

Thus when the production function is Cobb-Douglas and factor 
markets are competitive, equilibrium factor shares will be constant: 

R (t) K (t)
αK (t) = 

Y (t) 

= 
FK (K (t), L (t)) K (t) 

Y (t) 

= 
αA [K (t)]α−1 [L (t)]1−α K (t) 

1−αA [K (t)]α [L (t)] 
= α. 

Similarly, the share of labor is αL (t) = 1 − α. 

Reason: with σ = 1, as capital increases, its marginal product 
decreases proportionally, leaving the capital share constant. 
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Transitional Dynamics in the Continuous Time Solow Model Cobb-Douglas Example 

Dynamics with Cobb-Douglas Production Function III 

Per capita production function takes the form f (k) = Akα, so the 
steady state is given again as 

A (k∗)α−1 = 
n + δ 
s 

or � � 1 
sA 1−α 

k∗ = , 
n + δ 

k∗ is increasing in s and A and decreasing in n and δ. 
In addition, k∗ is increasing in α: higher α implies less diminishing 
returns to capital. 
Transitional dynamics are also straightforward in this case: 

k̇ (t) = sA [k (t)] α − (n + δ) k (t) 

with initial condition k (0). 
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� � 

Transitional Dynamics in the Continuous Time Solow Model Cobb-Douglas Example 

Dynamics with Cobb-Douglas Production Function IV
 

To solve this equation, let x (t) ≡ k (t)1−α ,
 

ẋ (t) = (1 − α) sA − (1 − α) (n + δ) x (t) ,
 

General solution 

sA sA 
x (t) = + x (0) − exp (− (1 − α) (n + δ) t) . 

n + δ n + δ 

In terms of the capital-labor ratio � � � � 1 

k (t) = 
sA 

+ [k (0)]1−α sA 
exp (− (1 − α) (n + δ) t) 

1−α 

. 
n + δ 

− 
δ 
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Transitional Dynamics in the Continuous Time Solow Model Cobb-Douglas Example 

Dynamics with Cobb-Douglas Production Function V
 

This solution illustrates: 

starting from any k (0), k (t) k∗ = (sA/ (n + δ))1/(1−α), and rate →
of adjustment is related to (1 − α) (n + δ), 
more specifically, gap between k (0) and its steady-state value is closed 
at the exponential rate (1 − α) (n + δ). 

Intuitive: 

higher α, less diminishing returns, slows down rate at which marginal 
and average product of capital declines, reduces rate of adjustment to 
steady state. 
smaller δ and smaller n: slow down the adjustment of capital per 
worker and thus the rate of transitional dynamics. 
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Transitional Dynamics in the Continuous Time Solow Model Constant Elasticity of Substitution Example 

Constant Elasticity of Substitution Production Function I
 

Imposes a constant elasticity, σ, not necessarily equal to 1. 

Consider a vector-valued index of technology 
A (t) = (AH (t) , AK (t) , AL (t)). 

CES production function can be written as 

Y (t) = F [K (t) , L (t) , A (t)] � � σ 

σ σ≡ AH (t) γ (AK (t) K (t)) 
σ−1 
+ (1 − γ) (AL (t) L (t)) 

σ−1 σ−1 

AH (t) > 0, AK (t) > 0 and AL (t) > 0 are three different types of 
technological change 

γ ∈ (0, 1) is a distribution parameter, 
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Transitional Dynamics in the Continuous Time Solow Model Constant Elasticity of Substitution Example 

Constant Elasticity of Substitution Production Function II
 

σ ∈ [0, ∞] is the elasticity of substitution: easy to verify that 

FK γAK (t) 
σ−1 
K (t)− 1 σ σ 

FL 
=
(1 − γ) AL (t) 

σ−
σ 
1 
L (t)− σ 

1 , 

Thus, indeed have 

∂ ln (FK /FL ) 
−1 
.σ = − 

∂ ln (K /L) 
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Transitional Dynamics in the Continuous Time Solow Model Constant Elasticity of Substitution Example 

Constant Elasticity of Substitution Production Function III
 

As σ 1, the CES production function converges to the
→
Cobb-Douglas
 

Y (t) = AH (t) (AK (t)) 
γ (AL (t)) 

1−γ (K (t)) γ (L (t)) 1−γ 

As σ ∞, the CES production function becomes linear, i.e.
→ 

Y (t) = γAH (t) AK (t) K (t) + (1 − γ) AH (t) AL (t) L (t) .
 

Finally, as σ 0, the CES production function converges to the →
Leontief production function with no substitution between factors,
 

Y (t) = AH (t) min {γAK (t) K (t) ; (1 − γ) AL (t) L (t)} .
 

Leontief production function: if γAK (t) K (t) �= (1 − γ) AL (t) L (t), 
either capital or labor will be partially “idle”. 
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A First Look at Sustained Growth Sustained Growth 

A First Look at Sustained Growth I
 


Cobb-Douglas already showed that when α is close to 1, adjustment 
to steady-state level can be very slow. 

Simplest model of sustained growth essentially takes α = 1 in terms 
of the Cobb-Douglas production function above. 

Relax Assumptions 1 and 2 and suppose 

F [K (t) , L (t) , A (t)] = AK (t) , (15) 

where A > 0 is a constant. 

So-called “AK” model, and in its simplest form output does not even 
depend on labor. 

Results we would like to highlight apply with more general constant 
returns to scale production functions, 

F [K (t) , L (t) , A (t)] = AK (t) + BL (t) , (16) 
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A First Look at Sustained Growth Sustained Growth 

A First Look at Sustained Growth II
 


Assume population grows at n as before (cfr. equation (11)). 

Combining with the production function (15), 

k̇ (t)

k (t)

= sA − δ − n.


Therefore, if sA − δ − n > 0, there will be sustained growth in the 
capital-labor ratio.


From (15), this implies that there will be sustained growth in output

per capita as well.
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A First Look at Sustained Growth Sustained Growth 

A First Look at Sustained Growth III
 


Proposition	 Consider the Solow growth model with the production 
function (15) and suppose that sA − δ − n > 0. Then in 
equilibrium, there is sustained growth of output per capita at 
the rate sA − δ − n. In particular, starting with a 
capital-labor ratio k (0) > 0, the economy has 

k (t) = exp ((sA − δ − n) t) k (0) 

and 
y (t) = exp ((sA − δ − n) t) Ak (0) . 

Note no transitional dynamics. 
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A First Look at Sustained Growth Sustained Growth 

Sustained Growth in Figure
 

45°

(A−δ−n)k(t)
k(t+1)

k(0)0
k(t)

Courtesy of Princeton University Press. Used with permission. 
Figure 2.10 in Acemoglu, Daron. Introduction to Modern Economic Growth. 
Princeton, NJ: Princeton University Press, 2009. ISBN: 9780691132921. 

Figure: Sustained growth with the linear AK technology with sA − δ − n > 0. 
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1
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3

A First Look at Sustained Growth Sustained Growth 

A First Look at Sustained Growth IV
 


Unattractive features: 

Knife-edge case, requires the production function to be ultimately
 

linear in the capital stock.
 

Implies that as time goes by the share of national income accruing to
 

capital will increase towards 1.
 

Technological progress seems to be a major (perhaps the most major)
 

factor in understanding the process of economic growth.
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Solow Model with Technological Progress Balanced Growth 

Balanced Growth I
 


Production function F [K (t) , L (t) , A (t)] is too general. 

May not have balanced growth, i.e. a path of the economy consistent 
with the Kaldor facts (Kaldor, 1963). 

Kaldor facts: 

while output per capita increases, the capital-output ratio, the interest 
rate, and the distribution of income between capital and labor remain 
roughly constant. 
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Solow Model with Technological Progress Balanced Growth 

Historical Factor Shares
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Courtesy of Princeton University Press. Used with permission.

Figure 2.11 in Acemoglu, Daron. Introduction to Modern Economic Growth.

Princeton, NJ: Princeton University Press, 2009. ISBN: 9780691132921.��


Figure: Capital and Labor Share in the U.S. GDP. 
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Solow Model with Technological Progress Balanced Growth 

Balanced Growth II
 


Note capital share in national income is about 1/3, while the labor 
share is about 2/3. 

Ignoring land, not a major factor of production. 

But in poor countries land is a major factor of production. 

This pattern often makes economists choose AK 1/3L2/3. 

Main advantage from our point of view is that balanced growth is the 
same as a steady-state in transformed variables 

i.e., we will again have k̇ = 0, but the definition of k will change. 

But important to bear in mind that growth has many non-balanced 
features. 

e.g., the share of different sectors changes systematically. 
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Solow Model with Technological Progress Balanced Growth 

Types of Neutral Technological Progress I 

For some constant returns to scale function F̃ : 
Hicks-neutral technological progress:
 


F̃ [K (t) , L (t) , A (t)] = A (t) F [K (t) , L (t)] ,
 


Relabeling of the isoquants (without any change in their shape) of the 
function F̃ [K (t) , L (t) , A (t)] in the L-K space. 

Solow-neutral technological progress,
 


F̃ [K (t) , L (t) , A (t)] = F [A (t) K (t) , L (t)] .
 


Capital-augmenting progress: isoquants shifting with technological 
progress in a way that they have constant slope at a given labor-output 
ratio. 

Harrod-neutral technological progress, 

F̃ [K (t) , L (t) , A (t)] = F [K (t) , A (t) L (t)] . 

Increases output as if the economy had more labor: slope of the 
isoquants are constant along rays with constant capital-output ratio. 
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Solow Model with Technological Progress Balanced Growth 

Isoquants with Neutral Technological Progress
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Courtesy of Princeton University Press. Used with permission. 
Figure 2.12 in Acemoglu, Daron. Introduction to Modern Economic Growth. 
Princeton, NJ: Princeton University Press, 2009. ISBN: 9780691132921. 

Figure: Hicks-neutral, Solow-neutral and Harrod-neutral shifts in isoquants. 
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Solow Model with Technological Progress Balanced Growth 

Types of Neutral Technological Progress II
 

Could also have a vector valued index of technology
 

A (t) = (AH (t) , AK (t) , AL (t)) and a production function
 


F̃ [K (t) , L (t) , A (t)] = AH (t) F [AK (t) K (t) , AL (t) L (t)] , (17) 

Nests the constant elasticity of substitution production function
 

introduced in the Example above.
 


But even (17) is a restriction on the form of technological progress, 
A (t) could modify the entire production function. 

Balanced growth necessitates that all technological progress be labor 
augmenting or Harrod-neutral. 
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Solow Model with Technological Progress Uzawa’s Theorem 

Uzawa’s Theorem I
 


Focus on continuous time models. 

Key elements of balanced growth: constancy of factor shares and of 
the capital-output ratio, K (t) /Y (t). 

By factor shares, we mean 

αL (t) ≡ 
w (t) L (t) 

and αK (t) ≡ 
R (t) K (t) 

.
Y (t) Y (t) 

By Assumption 1 and Euler Theorem αL (t) + αK (t) = 1. 
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Solow Model with Technological Progress Uzawa’s Theorem 

Uzawa’s Theorem II 

Theorem 

(Uzawa I) Suppose L (t) = exp (nt) L (0), 

Y (t) = F̃ (K (t) , L (t) , Ã (t)), 

K̇ (t) = Y (t) − C (t) − δK (t), and F̃ is CRS in K and L. 
Suppose for τ < ∞, Ẏ (t) /Y (t) = gY > 0, K̇ (t) /K (t) = gK > 0 and 
Ċ (t) /C (t) = gC > 0. Then, 

gY = gK = gC ; and 

for any t ≥ τ, F̃ can be represented as 

Y (t) = F (K (t) , A (t) L (t)) , 

where A (t) ∈ R+, F : R2 
+ → R+ is homogeneous of degree 1, and 

Ȧ (t) /A (t) = g = gY − n. 
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Solow Model with Technological Progress Uzawa’s Theorem 

Proof of Uzawa’s Theorem I
 


By hypothesis, Y (t) = exp (gY (t − τ)) Y (τ),
 

K (t) = exp (gK (t − τ)) K (τ) and L (t) = exp (n (t − τ)) L (τ) for
 

some τ < ∞.
 


Since for t ≥ τ, K̇ (t) = gKK (t) = I (t) − C (t) − δK (t), we have 

(gK + δ) K (t) = Y (t) − C (t) . 

Then, 

(gK + δ) K (τ) =	 	 exp ((gY − gK ) (t − τ)) Y (τ) 

− exp ((gC − gK ) (t − τ)) C (τ) 

for all t ≥ τ. 
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Solow Model with Technological Progress Uzawa’s Theorem 

Proof of Uzawa’s Theorem II
 


Differentiating with respect to time 

0 = (gY − gK ) exp ((gY − gK ) (t − τ)) Y (τ) 

− (gC − gK ) exp ((gC − gK ) (t − τ)) C (τ) 

for all t ≥ τ. 

This equation can hold for all t ≥ τ 

if gY = gC and Y (τ) = C (τ), which is not possible, since gK > 0.
 

or if gY = gK and C (τ) = 0, which is not possible, since gC > 0 and
 

C (τ) > 0.
 

or if gY = gK = gC , which must thus be the case.
 


Therefore, gY = gK = gC as claimed in the first part of the theorem.
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Solow Model with Technological Progress Uzawa’s Theorem 

Proof of Uzawa’s Theorem III
 


Next, the aggregate production function for time τ� ≥ τ and any
 

t ≥ τ can be written as
 


exp	 −gY t − τ� Y (t) 

= F̃ � exp 
� 
−gK 

� 
t − τ� 

�� 
K (t) , exp 

� 
−n 

� 
t − τ� 

�� 
L (t) , Ã � τ� � 

Multiplying both sides by exp (gY (t − τ�)) and using the constant
 

returns to scale property of F , we obtain
 


Y (t) = F̃ e(t−τ�)(gY −gK )K (t) , e(t−τ�)(gY −n)L (t) , Ã τ� . 

From part 1, gY = gK , therefore 

Y (t) = F̃ � K (t) , exp 
�� 
t − τ� 

� 
(gY − n) 

� 
L (t) , Ã � τ� �� . 

Daron Acemoglu (MIT) Economic Growth Lecture 2 October 29, 2009. 48 / 68 



Solow Model with Technological Progress Uzawa’s Theorem 

Proof of Uzawa’s Theorem IV
 


Moreover, this equation is true for t ≥ τ regardless of τ�, thus 

Y (t) = F [K (t) , exp ((gY − n) t) L (t)] , 

= F [K (t) , A (t) L (t)] , 

with 
Ȧ (t) 
A (t) 

= gY − n 

establishing the second part of the theorem.
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Solow Model with Technological Progress Uzawa’s Theorem 

Implications of Uzawa’s Theorem
 

Corollary	 Under the assumptions of Uzawa Theorem, after time τ 
technological progress can be represented as Harrod neutral 
(purely labor augmenting). 

Remarkable feature: stated and proved without any reference to
 
equilibrium behavior or market clearing.
 

Also, contrary to Uzawa’s original theorem, not stated for a balanced 
growth path but only for an asymptotic path with constant rates of 
output, capital and consumption growth. 

But, not as general as it seems; 

the theorem gives only one representation. 
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Solow Model with Technological Progress Uzawa’s Theorem 

Stronger Theorem 

Theorem 

(Uzawa’s Theorem II) Suppose that all of the hypothesis in Uzawa’s 
Theorem are satisfied, so that F̃ : R2 

+ × A → R+ has a representation of 
the form F (K (t) , A (t) L (t)) with A (t) ∈ R+ and 
Ȧ (t) /A (t) = g = gY − n. In addition, suppose that factor markets are 
competitive and that for all t ≥ T , the rental rate satisfies R (t) = R∗ (or 
equivalently, αK (t) = α∗ K ). Then, denoting the partial derivatives of F̃ and 
F with respect to their first two arguments by F̃K , F̃L, FK and FL, we have 

F̃K 
� 
K (t) , L (t) , Ã (t) 

� 
= FK (K (t) , A (t) L (t)) and (18) 

F̃L 
� 
K (t) , L (t) , Ã (t) 

� 
= A (t) FL (K (t) , A (t) L (t)) . 

Moreover, if (18) holds and factor markets are competitive, then 
R (t) = R∗ (and αK (t) = α∗ K ) for all t ≥ T . 
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Solow Model with Technological Progress Uzawa’s Theorem 

Intuition 

Suppose the labor-augmenting representation of the aggregate 
production function applies. 

Then note that with competitive factor markets, as t ≥ τ, 

R (t) K (t)
αK (t) ≡ 

Y (t) 

= 
K (t) ∂F [K (t) , A (t) L (t)] 
Y (t) ∂K (t) 

= α∗ K , 

Second line uses the definition of the rental rate of capital in a 
competitive market 

Third line uses that gY = gK and gK = g + n from Uzawa Theorem 
and that F exhibits constant returns to scale so its derivative is 
homogeneous of degree 0. 
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Solow Model with Technological Progress Uzawa’s Theorem 

Intuition for the Uzawa’s Theorems
 


We assumed the economy features capital accumulation in the sense 
that gK > 0. 
From the aggregate resource constraint, this is only possible if output 
and capital grow at the same rate. 
Either this growth rate is equal to n and there is no technological 
change (i.e., proposition applies with g = 0), or the economy exhibits 
growth of per capita income and capital-labor ratio. 
The latter case creates an asymmetry between capital and labor:
 

capital is accumulating faster than labor.
 

Constancy of growth requires technological change to make up for
 
this asymmetry
 
But this intuition does not provide a reason for why technology
 

should take labor-augmenting (Harrod-neutral) form.
 

But if technology did not take this form, an asymptotic path with
 

constant growth rates would not be possible.
 


Daron Acemoglu (MIT) Economic Growth Lecture 2 October 29, 2009. 53 / 68 



Solow Model with Technological Progress Uzawa’s Theorem 

Interpretation
 

Distressing result: 

Balanced growth is only possible under a very stringent assumption. 
Provides no reason why technological change should take this form. 

But when technology is endogenous, intuition above also works to 
make technology endogenously more labor-augmenting than capital 
augmenting. 

Not only requires labor augmenting asymptotically, i.e., along the 
balanced growth path. 

This is the pattern that certain classes of endogenous-technology 
models will generate. 
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Solow Model with Technological Progress Uzawa’s Theorem 

Implications for Modeling of Growth
 

Does not require Y (t) = F [K (t) , A (t) L (t)], but only that it has a 
representation of the form Y (t) = F [K (t) , A (t) L (t)]. 

Allows one important exception. If, 

Y (t) = [AK (t) K (t)]α [AL(t)L(t)] 
1−α , 

then both AK (t) and AL (t) could grow asymptotically, while
 
maintaining balanced growth.
 

Because we can define A (t) = [AK (t)]
α/(1−α) AL (t) and the
 

production function can be represented as
 

α 1−αY (t) = [K (t)] [A(t)L(t)] . 

Differences between labor-augmenting and capital-augmenting (and 
other forms) of technological progress matter when the elasticity of 
substitution between capital and labor is not equal to 1. 
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Solow Model with Technological Progress Uzawa’s Theorem 

Further Intuition
 


Suppose the production function takes the special form
 

F [AK (t) K (t) , AL (t) L (t)].
 


The stronger theorem implies that factor shares will be constant. 

Given constant returns to scale, this can only be the case when
 

AK (t) K (t) and AL (t) L (t) grow at the same rate.
 


The fact that the capital-output ratio is constant in steady state (or 
the fact that capital accumulates) implies that K (t) must grow at 
the same rate as AL (t) L (t). 

Thus balanced growth can only be possible if AK (t) is asymptotically 
constant. 
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Solow Model with Technological Progress Solow Growth Model with Technological Progress 

The Solow Growth Model with Technological Progress: 
Continuous Time I 

From Uzawa Theorem, production function must admit representation
 

of the form 

Y (t) = F [K (t) , A (t) L (t)] , 

Moreover, suppose 
Ȧ (t) 
A (t) 

= g , (19) 

L̇ (t) 
L (t) 

= n. 

Again using the constant saving rate 

K̇ (t) = sF [K (t) , A (t) L (t)] − δK (t) . (20) 
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Solow Model with Technological Progress Solow Growth Model with Technological Progress 

The Solow Growth Model with Technological Progress: 
Continuous Time II 

Now define k (t) as the effective capital-labor ratio, i.e., 

k (t) ≡ 
A (
K
t)
(

L
t)
(t) 
. (21) 

Slight but useful abuse of notation. 
Differentiating this expression with respect to time, 

k̇ (t) K̇ (t)

k (t)

= 
K (t) 

− g − n. (22)


Output per unit of effective labor can be written as 

ŷ (t) ≡ 
Y (t) 

A (t) L (t) 
= F 

� 
K (t) 

A (t) L (t) 
, 1 
� 

≡ f (k (t)) .
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Solow Model with Technological Progress Solow Growth Model with Technological Progress 

The Solow Growth Model with Technological Progress: 
Continuous Time III 

Income per capita is y (t) ≡ Y (t) /L (t), i.e., 

y (t) = A (t) ŷ (t) (23) 

= A (t) f (k (t)) . 

Clearly if ŷ (t) is constant, income per capita, y (t), will grow over 
time, since A (t) is growing.


Thus should not look for “steady states” where income per capita is

constant, but for balanced growth paths, where income per capita

grows at a constant rate.


Some transformed variables such as ŷ (t) or k (t) in (22) remain 
constant.


Thus balanced growth paths can be thought of as steady states of a

transformed model.
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Solow Model with Technological Progress Solow Growth Model with Technological Progress 

The Solow Growth Model with Technological Progress: 
Continuous Time IV 

Hence use the terms “steady state” and balanced growth path 
interchangeably. 

Substituting for K̇ (t) from (20) into (22): 

k̇ (t) sF [K (t) , A (t) L (t)] 
k (t)

= 
K (t) 

− (δ + g + n) . 

Now using (21), 

k̇ (t) sf (k (t))

k (t)

= 
k (t) 

− (δ + g + n) , (24)


Only difference is the presence of g : k is no longer the capital-labor 
ratio but the effective capital-labor ratio. 
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Solow Model with Technological Progress Solow Growth Model with Technological Progress 

The Solow Growth Model with Technological Progress: 
Continuous Time V 

Proposition	 Consider the basic Solow growth model in continuous time, 
with Harrod-neutral technological progress at the rate g and 
population growth at the rate n. Suppose that Assumptions 
1 and 2 hold, and define the effective capital-labor ratio as in 
(21). Then there exists a unique steady state (balanced 
growth path) equilibrium where the effective capital-labor 
ratio is equal to k∗ ∈ (0, ∞) and is given by 

f (k∗) δ + g + n 
=	 . (25)

k∗	 s 

Per capita output and consumption grow at the rate g . 
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Solow Model with Technological Progress Solow Growth Model with Technological Progress 

The Solow Growth Model with Technological Progress: 
Continuous Time VI 

Equation (25), emphasizes that now total savings, sf (k), are used for 
replenishing the capital stock for three distinct reasons: 

depreciation at the rate δ. 
population growth at the rate n, which reduces capital per worker. 
Harrod-neutral technological progress at the rate g . 

Now replenishment of effective capital-labor ratio requires
 

investments to be equal to (δ + g + n) k.
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Solow Model with Technological Progress Solow Growth Model with Technological Progress 

The Solow Growth Model with Technological Progress: 
Continuous Time VII 

Proposition	 Suppose Assumptions 1 and 2 hold and let A (0) be the 
initial level of technology. Denote the balanced growth path 
level of effective capital-labor ratio by k∗ (A (0) , s, δ, n) and 
the level of output per capita by y ∗ (A (0) , s, δ, n, t). Then 

∂k∗ (A (0) , s, δ, n) ∂k∗ (A (0) , s, δ, n) 
= 0, > 0,

∂A (0) ∂s 
∂k∗ (A (0) , s, δ, n) ∂k∗ (A (0) , s, δ, n)

< 0 and < 0,
∂n ∂δ 

and also 
∂y ∗ (A (0) , s, δ, n, t) ∂y ∗ (A (0) , s, δ, n, t)

> 0,	 > 0,
∂A (0) ∂s 

∂y ∗ (A (0) , s, δ, n, t) ∂y ∗ (A (0) , s, δ, n, t)
< 0 and	 < 0,

∂n	 ∂δ 
for each t. 
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Solow Model with Technological Progress Solow Growth Model with Technological Progress 

The Solow Growth Model with Technological Progress: 
Continuous Time VIII 

Proposition	 Suppose that Assumptions 1 and 2 hold, then the Solow 
growth model with Harrod-neutral technological progress and 
population growth in continuous time is asymptotically 
stable, i.e., starting from any k (0) > 0, the effective 
capital-labor ratio converges to a steady-state value k∗ 

(k (t) k∗).→ 

Now model generates growth in output per capita, but entirely 
exogenously. 
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Comparative Dynamics Comparative Dynamics 

Comparative Dynamics I
 

Comparative dynamics: dynamic response of an economy to a change 
in its parameters or to shocks. 

Different from comparative statics in Propositions above in that we 
are interested in the entire path of adjustment of the economy 
following the shock or changing parameter. 

For brevity we will focus on the continuous time economy. 

Recall 
k̇ (t) /k (t) = sf (k (t)) /k (t) − (δ + g + n) 
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Comparative Dynamics Comparative Dynamics 

Comparative Dynamics in Figure
 

Courtesy of Princeton University Press. Used with permission. 
Figure 2.13 in Acemoglu, Daron. Introduction to Modern Economic Growth.
Princeton, NJ: Princeton University Press, 2009. ISBN: 9780691132921. 

Figure: Dynamics following an increase in the savings rate from s to s �. The solid 
arrows show the dynamics for the initial steady state, while the dashed arrows 
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Comparative Dynamics Comparative Dynamics 

Comparative Dynamics II
 

One-time, unanticipated, permanent increase in the saving rate from 
s to s �. 

Shifts curve to the right as shown by the dotted line, with a new 
intersection with the horizontal axis, k∗∗. 
Arrows on the horizontal axis show how the effective capital-labor ratio 
adjusts gradually to k∗∗. 
Immediately, the capital stock remains unchanged (since it is a state 
variable). 
After this point, it follows the dashed arrows on the horizontal axis. 

s changes in unanticipated manner at t = t � , but will be reversed 
back to its original value at some known future date t = t �� > t �. 

Starting at t �, the economy follows the rightwards arrows until t �. 
After t ��, the original steady state of the differential equation applies 
and leftwards arrows become effective. 
From t �� onwards, economy gradually returns back to its original 
balanced growth equilibrium, k∗. 
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Conclusions 

Conclusions
 


Simple and tractable framework, which allows us to discuss capital 
accumulation and the implications of technological progress. 

Solow model shows us that if there is no technological progress, and 
as long as we are not in the AK world, there will be no sustained 
growth. 

Generate per capita output growth, but only exogenously:
 

technological progress is a blackbox.
 


Capital accumulation: determined by the saving rate, the depreciation 
rate and the rate of population growth. All are exogenous. 

Need to dig deeper and understand what lies in these black boxes. 
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