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� 

Discounted Infinite Horizon Problem 

Consider a general formulation for the discounted infinite horizon problem 
∞ 

max W ([x (t) , y (t)] ) ≡ exp (−ρt) f (x (t) , y (t)) dt, (1)t x (t),y (t) 0 

s.t.	 ẋ (t) = g (t, x (t) , y (t)) , x (t) ∈ IntX (t) , y (t) ∈ IntY (t) for all t, 

x (0) = x0, and lim b (t) x (t) ≥ x1. 
t→∞
 


Here, b : R+ → R+ is a function such that limt→∞ b (t) < ∞. Economic
 

problems typically fit into this framework.
 

First order optimality conditions developed in Chapter 7 of the book in terms 
of the co-state variable λ (t) (interpreted as the shadow value of the stock 
variable) and the Hamiltonian 

H (t, x (t) , y (t) , µ (t)) = exp (−ρt) f (x (t) , y (t)) + λ (t) g (t, x (t) , y (t)) . 

In discounted problems, it is more convenient to work with the current
 

co-state variable µ (t) = exp (ρt) λ (t) (interpreted as the current shadow
 

value of stock variable) and the current-value Hamiltonian Hı as
 


Hı (t, x (t) , y (t) , µ (t)) = exp (ρt) H (t, x (t) , y (t) , µ (t)) (2) 

= f (x (t) , y (t)) + µ (t) g (t, x (t) , y (t)) 
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Discounted Infinite Horizon Problem: FOCs 

The FOCs can be written in terms of Hı and µ (t), as 

Hı y (t, xı (t) , yı (t) , µ (t)) = 0 for all t (3) 

Hı x (t, xı (t) , yı (t) , µ (t)) = ρµ (t) − µ̇ (t) for all t (4) 

lim [exp (−ρt) µ (t) ıx (t)] = 0. (5)
t→∞ 

We also have the stock evolution equation, 

ẋ (t) = g (t, x (t) , y (t)) with x (0) = x0. (6) 

The line of attack: (i) Find a candidate path that satisfies FOCs and (6), (ii) 
use the suffi ciency theorem to show the candidate is optimal.
 


Eqs. (3) − (6) can typically be reduced to two differential equations in two
 

variables, x (t) and µ (t), with one initial condition (i.e., x (0) = x0) and one
 

end-value condition (i.e., the transversality condition (5)).
 


The solution to these differential equations give a candidate allocation that

satisfies the FOCs. But is this candidate allocation optimal? Are there other

allocations that are also optimal? Suffi ciency theorem takes care of all this.
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Discounted Infinite Horizon Problem: Suffi ciency Theorem 

Theorem 7.14 (Suffi ciency Conditions for Discounted Infinite-Horizon 
Problems): Consider problem (1) with f and g continuously differentiable. 
Define Hı (t, x , y , µ) as the current-value Hamiltonian as in (2), and suppose 
that a solution yı (t) and the corresponding path of state variable xı (t) satisfy 
(3)-(5). Given the resulting current-value co-state variable µ (t), define 
M (t, x , µ) ≡ maxy (t)∈Y(t) Hı (t, x , y , µ). Suppose that V (t, xı (t)) exists and 
is finite for all t (where V (t, x (t)) is the value function formally defined in 
Eq. (7.38) of the textbook), that for any admissible pair (x (t) , y (t)), 
limt→∞ [exp (−ρt) µ (t) x (t)] ≥ 0, and that X (t) is convex and M (t, x , µ) is 
concave in x ∈ X (t) for all t. Then, the pair (ıx (t) , yı (t)) achieves the 
global maximum of (1). Moreover, if M (t, x , µ) is strictly concave in x , 
(ıx (t) , yı (t)) is the unique solution to (1). 
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1

2

Suffi ciency Theorem: What to Check 

Find a candidate path [ıx (t) , yı (t) , µ (t)]t that satisfies the FOCs and check, 
essentially, two requirements 

Concavity: check that the maximized Hamiltonian M (t, x , µ (t)) ≡ maxy 
Hı (t, x , y , µ (t)) is concave as a function of x (given the candidate co-state 
variable µ (t)). 
A suffi cient condition is that Hı (t, x , y , µ (t)) = f (t, x , y ) + µ (t) g (t, x , y ) is 
jointly concave in x and y . When the candidate µ (t) is positive, a suffi cient 
condition is that f and g are both jointly concave in x and y . 
A budget constraint at infinity: check that any other admissible path 
[x (t) , y (t)] satisfies limt→∞ exp (−ρt) µ (t) x (t) ≥ 0 (given the candidate t 
co-state variable µ (t)). 

If these conditions hold, then the candidate path [ıx (t) , yı (t) , µ (t)]t is 
optimal. If Condition 1 holds with strict concavity, then the optimal path is 
unique. 
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� � 

Neoclassical Model: The Household’s Problem 

Given the path of prices [r (t) , w (t)]t , households choose the path of 
per-capita consumption and assets [c (t) , a (t)]∞t=0 to solve 

max 
∞ 

e−ρt ent u (c (t)) dt = 
∞ 

e−(ρ−n)tu (c (t)) dt 
[c(t),a(t)]∞t=0 0 0 

s.t. ȧ (t) = r (t) a (t) + w (t) − c (t) − na (t) , (7) 

0lim e− t r (s)ds ent a (t) = 0. 
t→∞ 

(Detour: how to derive the asset evolution equation. Aggregate assets, A (t), 
follow 

Ȧ (t) = r (t) A (t) + w (t) L (t) − c (t) L (t) . 

Hence Per-capita assets, a (t) ≡ A (t) /L (t) follow, 

ȧ (t)
= 
Ȧ (t) − n = r (t) + 

w (t) c (t) − n 
a (t) Ȧ (t) a (t) 

− 
a (t) 

leading to Eq. (7)). 
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� � � 
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Neoclassical Model: Solving the Household’s Problem 

CV Hamiltonian (with effective discount factor ρ − n),
 

Hı (t, a, c , µ) = u (c) + µ (a (r (t) − n) + w (t) − c) .
 

FOCs: 

FOC-1: Hı c = 0 ⇒ u� (c) = µ (8) 

FOC-2: Hı a = (ρ − n) µ − µ̇ ⇒ 
µ

µ 
˙
= − (r (t) − ρ) . 

The transversality condition is 

0lim e−(ρ−n)t µ (t) a (t) = lim µ (0) e−(ρ−n)t e− t (r (s)−ρ)ds a (t)
t→∞ t→∞ � 

= u� (c (0)) lim e− t r (s)ds ent a (t) = 0, (9)0 

t→∞ 

0(where we use µ (t) = µ (0) e
t −(r (s)−ρ)ds which follows from FOC-2). 
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How to Use the Suffi ciency Theorem: Constructing the 
Candidate Path 

Combining Eqs. (8) and eliminating µ (t) gives the Euler equation:
 

ċ (t) 
c (t) 

= 
1
 

�u (c (t)) 
(r (t) − ρ) , (10) � � 

where �u (c (t)) = − u��(c(t))c (t) is elasticity of marginal utility (and inverse u�(c(t)) 

elasticity of intertemporal substitution). With CES preferences,
 

c (t)1−θ 

/ (1 − θ), we have �u (c (t)) = θ.
 

Recall that we also have the asset evolution equation


ȧ (t) = r (t) a (t) + w (t) − c (t) − na (t) . (11) 

Two differential equations in (a (t) , c (t)) with one initial condition for a (0) 
and one transversality condition (9).

These equations typically have a solution, which is our candidate path.

Below, we see how to pictorially construct this path. For now, suppose we

have constructed a candidate path [ıa (t) , cı (t)]t . We now would like to apply

the suffi ciency theorem and show that this is the unique optimum.
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How to Use the Suffi cency Theorem: Conditions 1 and 2 

Let [ıc (t) , ıa (t)]∞t=0 be the candidate path (with the corresponding co-state 
variable µ (t) = u� (ıc (t))).
 

Concavity condition (condition 1) checks since
 
Hı (t, a, c , µ (t)) = u (c) + µ (t) (a (r (t) − n) + w (t) − c) is jointly concave 
in a and c . But not strictly concave. 

Boundary requirement for admissible paths (condition 2) also checks. To see 
this, consider some feasible path [a (t) , c (t)]t and note that we need to check 

lim a (t) e−(ρ−n)t µ (t) ≥ 0. 
t→∞ 

t 
0Using FOC-2, we have µ (t) = µ (0) e −(r (s)−ρ)ds and we substitute this to 

get � 
0µ (0) lim a (t) e
t −(r (s)−n)ds ≥ 0, 

t→∞ 

which holds since any feasible [a (t) , c (t)]t satisfies the no-Ponzi condition. 
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How to Use the Suffi cency Theorem: Uniqueness? 

Hence, Theorem 7.14 applies and shows that the candidate (ıa (t) , cı (t))∞t=0 
solves the household’s problem. Problem not strict concave, so Theorem 7.14 
doesn’t give uniqueness. 

See Exercise 8.11 for a proof that this is indeed the unique solution (as long 
as u (.) is strictly concave). 

So far, we have characterized household behavior given the price sequence 
[r (t) , w (t)]t (partial equilibrium analysis). 

Note that we do not yet know whether an equilibrium exists. Nor do we know 
whether it is unique. We only know that there is a unique solution to the 
household problem for any given price sequence. 

We next close the model and characterize the competitive equilibrium. 
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Neoclassical Model: Production Side and Equilibrium 

On the production side, final good producers take prices as given 
(competitive) and maximize output. Since capital and labor markets clear, 
this condition equivalently gives the competitive factor prices 

R (t) = FK (K (t) , L (t)) = f � (k (t)) and r (t) = R (t) − δ (12) 

w (t) = FL (K (t) , L (t)) = f (k (t)) − f � (k (t)) k (t) . 

The competitive equilibrium is a path of allocations and prices 
[c (t) , a (t) , k (t) , w (t) , r (t)]∞t=0 such that households choose [c (t) , a (t)]t 
optimally, competitive firms optimize, and factor, good and asset markets 
clear (in particular, a (t) = k (t) for all t). 

Conditions (12) capture firm optimization and factor market clearing, so the 
equilibrium definition in this model can be simplified by incorporating these 
conditions into the definition. 
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1

2

3

� 

Neoclassical Model: Characterizing the Equilibrium Path 

Substitute competitive prices in household’s Euler equation, budget 
constraint and the transversality condition ( FOCs (10), (11) and (9) above) 
and use a (t) = k (t) to get 

ċ (t) 1 
= (f � (k (t)) − ρ − δ) , 

c (t) �u (c (t))
 


k̇ (t) = f (k (t)) − c (t) − (δ + n) k (t) ,
 


k (0) given, lim e− 0 
t (f � k (s)−δ)ds ent k (t) = 0. 

t→∞ 

Two differential equations in (c (t) , k (t)) with two conditions. Next steps: 
Find a candidate path [c (t) , k (t)]t that satisfies these equations. Will be the 
saddle path on the phase diagram. 
Construct prices R (t) = f � (k (t)) , w (t) = f (k (t)) − k (t) f � (k (t)) and 
r (t) = R (t) − δ. These prices are consistent with equilibrium by construction. 
Construct the household allocation [c (t) , a (t) = k (t)]t and note that it 
solves the household system (Dif. Eqs. (10), (11), and the transversality 
condition (9)), given equilibrium prices [r (t) , w (t)]t . I.e., this allocation is 
optimal for the household. 

It follows that the constructed path [c (t) , a (t) , k (t) , w (t) , r (t)] ∞t=0 is an 
equilibrium.
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Neoclassical Model: Constructing the Equilibrium Path 
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Courtesy of Princeton University Press. Used with permission.
Figure 8.1 in Acemoglu, K. Daron. Introduction to Modern Economic Growth.
Princeton, NJ: Princeton University Press, 2009. ISBN: 9780691132921.

Introduction to Modern Economic Growth
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Neoclassical Model: Social Planner’s Problem 

The social planner chooses [k (t) , c (t)]t to solve 
∞ 

max e−(ρ−n)tu (c (t)) dt 
[c (t),k (t)]∞t=0 0 

s.t. k̇ (t) = f (k (t)) − c (t) − (n + δ) k (t) and k (t) ≥ 0. (13) 

Note that the social planner solves a different problem than the household 
(that will turn out to have the same solution). 
The CV Hamiltonian for the planner’s problem is

Hı (t, k, k, µ) = u (c) + µ (f (k) − c − (n + δ) k). The FOCs are


Hı c = 0 u� (c) = µ
⇒ 

Hık = µ ((f � (k (t)) − δ − n)) = (ρ − n) µ − µ̇ 
µ

µ 
˙
 
= − (f � (k (t)) − δ − ρ) .⇒ 

The transversality condition is 

lim e−(ρ−n)t µ (t) k (t) = lim µ (0) e−(ρ−n)t e− 0 
t (f �(k(s))−δ−ρ)ds k (t)

t→∞ t→∞ � � � 
= u� (c (0)) lim e− 0 

t (f �(k(s))−δ)ds ent a (t) = 0, 
t→∞ 
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Neoclassical Model: Social Planner’s Problem, FOCs 

Combining FOCs, we get the Euler equation. Combining this with the
 

resource constraints, we get the system
 


ċ (t) 1 
= (f � (k (t)) − ρ − δ) , (14)

c (t) �u (c (t))
 

k̇ (t) = f (k (t)) − c (t) − (δ + n) k (t) ,
 

k (0) given, lim e− 0 
t (f � k (s)−δ)ds ent k (t) = 0. 

t→∞ 

Find a candidate path cı (t) , kı (t) that solves this system. Theorem 7.14 
t 

applies to the planner’s problem since (1) Hı is jointly strictly concave in c 
and k, and (2) For any admissible (k (t) , c (t)), we have 
limt→∞ exp (− (ρ − n) t) µ (t) k (t) ≥ 0 (since µ (t) ≥ 0 and k (t) ≥ 0). 

Theorem 7.14 shows that cı (t) , kı (t) is optimal, and moreover, it is 
t 

unique due to strict concavity of CV Hamiltonian. 
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Neoclassical Model: Welfare Theorems, Uniqueness 

Note that the system (14) is identical to the equilibrium system. This shows 
that the equilibrium path of consumption and capital are identical to the 
social planner’s choice of consumption and capital. Proves that the welfare 
theorems apply to this economy. 

Note also that looking at the social planner’s problem proves that the 
equilibrium path must be unique. As the differential equation systems are 
identical, any equilibrium path [c (t) , k (t)] also solves the planner’s problem. 
But the planner’s problem has a unique solution from strict concavity. It 
follows that the equilibrium is unique. 
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Solving Autonomous Linear Differential Equations 

We first study stability of linear systems. Local stability of non-linear systems 
will be closely related. 

Let y ∈ Rn , A be a non-singular matrix (det A =� 0) and consider the vector 
differential equation 

ẏ = Ay + b, with y (0) given. 

Define x = y + A−1b, the previous differential equation is equivalent to 

ẋ = Ax , wth x (0) ≡ y (0) + A−1b given. 

Hence we consider differential equations ẋ = Ax without loss of generality. 
Note that the unique steady-state is x∗ = 0. In other words, we have 
normalized the steady-state to 0.
 

Line of attack: Represent x in the coordinates corresponding to eigenvectors
 
of A, because, with this representation, the n dimensional differential equation
 
ẋ = Ax will decompose into n linear differential equations of dimension 1.
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Some Linear Algebra 

Suppose A has linearly independent eigenvectors {v1, .., vn } (one suffi cient 
condition for this is that A has distinct eigenvalues {λ1, .., λn }). 
Let the eigendecomposition of A be 

A = PDP−1, 

where ⎡ ⎤ 
λ1 0 0 

D = ⎣ 0 λ2 0 ⎦ 

0 0 λn 

is the diagonal matrix of eigenvalues and 

P = [v1 v2..vn ] 

where vi is the eigenvector corresponding to eigenvalue λi (that is, 
Avi = λi vi for each i). 
P is the basis of eigenvectors, P−1 is the change of coordinate matrix that 
takes regular coordinates to eigen-coordinates (that is, weights on each 
eigenvector when we write the vector as a linear combination of 
eigenvectors). If we define z = P−1x , then z is the eigencoordinates of the 
vector we represent as x with regular coordinates. 
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�� �� 

�

� � � � 

Example 

Let � �
 
1/2 −3/2


A = . −3/2 1/2 

Eigenvalues are found as the solution to the following equation (why?): 

det (A − λI ) = det 
1/
−
2
3
−
/2 
λ 

1/
−
2
3
− 
/2 
λ 

= 0, 

which yields λ1 = −1 and λ2 = 2. 

Considering the equation Ax = vi x , the corresponding eigenvectors can be 
derived as v1 = 1/

√
2 [1 1], v2 = 1/

√
2 [−1 1]. Note that eigenvalues are 

uniquely determined, but eigenvectors are only determined up to a scalar, that 
is, for any α = 0, αv1 could also serve as an eigenvector corresponding to λ1. 

An eigendecomposition of A is PDP−1, where 

1/
√
2 

√
2

P = 
1/
√
2 

−
1
1
/

/√
2

, P−1 = PT ,Λ = 
−1

2 
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Back to Linear Differential Equations 

Let z ≡ P−1x , and rewrite ẋ = Ax in terms of the eigencoordinates 

ẋ = Ax 

ẋ = PDP−1x 

P−1 ẋ = Dz 

ż = Dz , with z (0) = P−1x (0) . 

The solution in eigencoordinates is 

zi (t) = zi (0) exp (λi t) , ∀i ∈ {1, .., n} . 

(Superscripts correspond to components of a vector, subscripts correspond to 
eigenvalues or eigenvectors) 
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Linear Differential Equations, Solution 

Then, going back to regular coordinates, we have 

x = Pz 
n 

xj (t) = Pij zi (t)
 

i =1
 

n
 

= Pij zi (0) exp (λi t) , for each j ∈ {1, .., n}
i =1 

Hence, the solution is a linear combination of exponentials with eigenvalues. 
The weights could be found by solving for P and using the initial condition 
x (0) to calculate 

z (0) = P−1x (0) 

as the initial value in eigencoordinates. 
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Stability of Linear Systems 

Consider the linear system (with A non-singular) 

ẋ = Ax . 

When is this system stable, i.e., when does it converge to the steady-state 
x∗ = 0 from any starting point?
 
Recall that the solution takes the form
 

n 

xj (t) = Pij zi (0) exp (λi t) , for each j ∈ {1, .., n} . 
i =1 

This will be stable starting at any z (0) (or, equivalently, any x (0)), when we
 
have λi < 0 for all i (if the eigenvalue is complex, then the real part being
 
less than zero is suffi cient).
 
Proves Theorem 2.4 in the book: The linear system is globally asymptotically
 
stable if all eigenvalues of A have negative real parts.
 

The analysis adds in addition: when some eigenvalues have positive real part,
 

the system cannot be globally stable (starting with some initial conditions,
 

the system diverges).
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� � 
Saddle Path Stability 

What if not all eigenvalues have negative real parts? Suppose m ≤ n of the 
eigenvalues have negative real parts, call them {λ1, .., λm }. 
Then, if the initial eigencoordinates z (0) has the form z1 , ..., zm , 0, .., 0 , 
then the above system is stable. This set is equivalent to Rm ⊂ Rn , an 
m−dimensional sub-space of the larger space Rn . 

Recall how z (0) and x (0) are related: x (0) = Pz (0). Then, there is an 
m-dimensional subspace of x vectors for which, if we start with x (0) in this 
space, then the system will asymptotically converge to 0.�m i 

� 
i 
�m

More specifically, if x (0) = i =1 z vi for some z i =1, that is, if x is in the 
sub-space of eigenvectors corresponding to "stable" eigenvalues, then the
 
system converges.
 

Proves Theorem 7.18: If m of the eigenvalues of A has negative real parts,
 
then there exists m−dimensional subspace such that, starting from x (0) in
 
this space, x (t) 0.
→ 

This analysis adds in addition: if x (0) has a non-zero eigencoordinate for an
 
eigenvector corresponding to an unstable eigenvalue (positive real part), then
 
the system is unstable (diverges).
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Back to Example, Pictorial Summary 

Consider the example before and consider the system ẋ = Ax . Eigenvectors: 
v1 stable since λ1 = −1, v2 unstable since λ2 = 2. 
Starting from x (0) the system diverges, but starting from x � (0) it converges 
to the steady state (x∗ = 0). 
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Nonlinear Differential Equations 

For some continously differentiable function G : Rn Rn , consider the
→
system
 


ẋ = G (x) .
 


Let x∗ denote a steady-state, i.e., suppose G (x∗) = 0.
 
Apply Taylor’s expansion around x∗:
 

ẋ ≈ G (x∗) + �G (x∗) (x − x∗) 

d (x − x∗) ≈ �G (x∗) (x − x∗)
dt 

Locally, this system behaves like a linear system. Hence analogs of above

theorems apply locally.

Theorem 2.5: The non-linear system is locally asymptotically stable around 
steady state x∗ if all eigenvalues of �G (x∗) has negative real parts. (There 
exists a neighborhood B of x∗, such that for all x (0) ∈ B, x (t) → x∗.) 
Theorem 7.19: If m of the eigenvalues of �G (x∗) has negative real parts, 
then there exists a neighborhood B around x∗ and an m−dimensional
 
manifold M ⊂ B, such that for all x (0) ∈ M, x (t) → x
∗. 
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� � � � 

Stability in the Neoclassical Model 

The differential equation system in the neoclassical model can be written as: 

�uc (c)
ċ

= F (c , k) ≡ 
c (f � (k) − δ − ρ) 

. (15)
k̇ f (k) − (δ + n) k − c 

The steady state (c∗, k∗) is characterized by
 

f � (k∗) = δ + ρ (16)
 

c∗ = f (k∗) − (δ + n) k∗. 

Alp Simsek (MIT) 14.452 Recitation Notes: 1. Optimal Control and Neoc Recitation 3 on November 13, 2009 26 / 30 



lassical Model2. Stability of Differential Systems

� � 

Steady State and Local Approximation 

A first-order approximation of the system in Eq. (15) around steady state 
gives � � � � 

d c − c∗ ∗, k∗) 
c − c∗ 

, (17)
dt k − k∗ ≈ �F (c

k − k∗ 

where �F (c∗, k∗) is the Jacobian of the vector-valued function F (c , k) in 
(15). 

Local stability properties are governed by eigenvalues of �F (c∗, k∗). To

calculate �F (c∗, k∗), first note that
� d � � �c 

�uc (c ) 
� c �� 

dc f (k) − δ − ρ �uc (c) 
f (k)�F (c , k) = 

f 
� 
(k) − δ − n−1 

and use the steady state relations (16) to evaluate 

�F (c 
−
0
1 

c∗ 

ρ − 
f 
�� 

n 
(k∗)∗, k∗) = �uc (c∗) . 
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lassical Model2. Stability of Differential Systems

��	 �� 

Eigenvalues and Saddle-Path Stability 

The eigenvalues of �F (c∗, k∗) are found as the roots of the polynomial 
P (λ) given by 

P (λ) = det (�F (c∗, k∗) − λI ) = det	
−λ �uc

c 
(

∗ 

c ∗) f 
�� 
(k∗) 

−1 ρ − n − λ 

= (λ + n − ρ) λ + 
c∗ 

f 
�� 
(k∗) . 

�uc (c∗) 

Note that, P (λ) is a quadratic with positive coeffi cient on λ2 which also 
satisfies ∗ 

P (0) = 
c

f 
�� 
(k∗) < 0,

�uc (c∗) 

hence P (λ) has one negative and one positive root, that is: 

λ1 < 0 < λ2. 

Hence, the system in (15) is not globally stable, but locally saddle path stable. 
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lassical Model2. Stability of Differential Systems

Shape of Saddle Path (Locally) 

We can check that components of v1 (corresponding to the stable eigenvalue 
λ1) has the same sign: � � � � � � 

0 �uc

c 
( 

∗ 

c∗) f 
�� 
(k∗) v1

1 
= λ1 

v1
1 

−1 ρ − n v1
2 v1

2 

The first equation can be written as: 

c∗ 

f 
�� 
(k∗) v1

2 = λ1v1
1 

�uc (c∗) 

Since c 
( 

∗ 
f 
�� 
(k∗) < 0 and λ1 < 0, it follows that v1

2 and v1
1 are of the �uc c∗) 

same sign. 

Confirms that the saddle path is increasing. Confirms the way we drew the 
picture. 
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lassical Model2. Stability of Differential Systems

1

2

� � � 

� � � 

Speed of Convergence 

Rate of convergence depends on the size of the stable eigenvalue, |λ1|.
 

Using the quadratic formula, the eigenvalues can be explicitly solved as:
 


1 2 c∗f �� (k∗)
λ1,2 = 

2 
ρ − n ± (ρ − n) − 4 

�uc (c∗) 
. 

The smaller (and the negative) real root, λ1, is given by 

λ1 = 
1
2 
(ρ − n) 1 − 1 + 4 

(ρ 
c
− 

∗ |
n
f 
) 

�� 

�

(

u

k

c 

∗

(

)

c
|
∗) 

. 

Note that λ1 < 0. The higher |λ1| (the lower λ1), the faster the convergence. 

When |f �� (k∗)| is higher, convergence is faster. More concavity => faster 
convergence (also present in the Solow model).


When �uc (c
∗) (inverse elasticity of substitution) is higher, convergence is


slower. Lower elasticity of substitution => the less willing people are to give

up consumption to invest => slower convergence to steady state.
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