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Problem Set 2 Solution 

Problem 1 (Human Capital and Incomplete Markets) 

1. The Bellman equation is 

V (w) = max {U (c) + βE[V (w�)]}
c,k,h,w

s.t. w� = Akα + ˜˜ Bhγ + R(w − c − k − h). 

Notice that to simplify notation I do not give k and h a prime although they are next 
period variables. A natural guess for the value function is 

1 
V (w) = − exp(−Γ(aw + b)). 

aΓ 

In order to perform the optimization we need to evaluate E[V (w]). We have 

¯ ¯E[w�] = Akα + Bhγ + R(w − c − k − h), 

= σ2 k2αVar[w�] + σ2 h2γ + 2σAB k
αhγ .A B 

Now

� 

1 
�


E[V (w�)] = E exp(−Γ(aw� + b))− 
aΓ 

1 
� 

= exp −Γ(aE[w�] + b) + 
1
Γ2 a 2Var(w�)

� 

.− 
aΓ 2


Thus the objective in the Bellman equation can be written as


1 1 
�


¯ ¯exp(−Γc) − β exp − Γa[Akα + Bhγ + R(w − c − k − h)] − Γb− 
Γ aΓ


1

+ Γ2 a 2[σ2 k2α + σ2 h2γ + 2σAB k

αhγ ]

� 

2 A B 

The first order condition with respect to consumption is given by 

¯ ¯exp(−Γc) = βR exp − Γa[Akα + Bhγ + R(w − c − k − h)] − Γb 

1 
+ Γ2 a 2[σ2 k2α + σ2 h2γ + 2σAB k

αhγ ]

� 

2 A B 

1 



The first order conditions with respect to k and h are 

¯
Ak2α−1 + ασAB k

α−1hγ 
� 
,R = αAkα−1 − Γa 

�
ασ2 

¯R = γBhγ−1 − Γa 
�
γσ2 h2γ−1 + γσAB g γ−1kα

� 
.B 

Notice that the level of wealth does not appear in these equations, so the optimal 
choice of k and h is independent of the state w. Denote the solutions to this system 
of equations as k∗(a) and h∗(a). Now define the function 

¯ ¯φ(a, b) = −[Γ(1 + aR)]−1 
� 

log(βR) − Γa[Ak∗(a)α + Bh∗(a)γ − R(k∗(a) + h∗(a))]· 
1 − Γb + Γ2 a 2[σ2 k∗(a)2α + σ2 h∗(a)2γ + 2σAB k

∗(a)αh∗(a)γ ]
� 

B2 A

Then the first order condition for consumption can be rewritten as 

exp(−Γc) = exp(−ΓaR(w − c) − Γ(1 + aR)φ(a, b)) 

and so we obtain the consumption function 

aR 
c = w + φ(a, b). 

1 + aR 

Substituting into the objective we get 

1 1 
exp(−Γc) − exp(−ΓaR(w − c) − Γ(1 + aR)φ(a, b))− 

Γ ΓaR

1 

� � 
aR 

��


= exp −Γ w + φ(a, b)− 
Γ 1 + aR 
1 

� � 
aR 

� � 

exp −ΓaR w − φ(a, b) − Γ(1 + aR)φ(a, b)w −− 
ΓaR 1 + aR


1 
�

1 
� � � 

aR 
��


= − 
Γ 

1 + exp −Γ w + φ(a, b)
aR 1 + aR 

1 
� � 

aR 
�� 

= exp −Γ w + φ(a, b)
aR Γ 1 + aR

− 
1+aR 

For our guess to be correct this must be equal to − 
a
1
Γ exp(−Γ(aw + b)). Thus it must 

be the case that 
aR 

a = 
1 + aR 

which implies a = R−1 . It must also be the case that b = φ(a, b), which yields 
R 

¯ ¯b = −[ΓaR]−1 
� 

log(βR) − Γa[Ak∗(a)α + Bh∗(a)γ − R(k∗(a) + h∗(a))]· 
1 2+ Γ2 a [σ2 k∗(a)2α + σ2 h∗(a)2γ + 2σAB k

∗(a)αh∗(a)γ ]
� 

B2 A
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Note that the consumption function can now be written as c = aw + b. 
Now let’s analyze how investment in physical and human captial depends on the 
variance and covariance of shocks. Totally differentiating the first order condition for 
physical capital yields 

dk 
0 = [(α − 1)αAkα−1 − Γa 

�
(2α − 1)ασ2¯

Ak2α−1 + (α − 1)ασAB k
α−1hγ 

�
] 
k


− ΓaαγσAB k
α−1hγ−1dh − Γaαk2α−1dσ2


A − Γaαkα−1hγ dσAB . 

Using the first order condition to simplify the coefficient for dk we get 

0 = −[(1 − α)Rk−1 + Γaα2σ2 k2(α−1)]dk − ΓaαγσAB k
α−1hγ−1dhA


− Γaαk2α−1dσ2

A − Γaαkα−1hγ dσAB . 

Dividing by Γaαkα−1 and rearranging we get 

Akα−1]dk + γσAB h
γ−1dh = −kαdσ2[ψk + ασ2 

A − hγ dσAB . 

1 1 R2 
where ψk = 1−α 

Γ kα R−1 > 0.
α 

By symmetry 

[ψh + γσ2 hγ−1]dh + ασAB k
α−1dk = −hγ dσ2 

B − kαdσAB . 

1 1 R2 

B 

where ψh = 1−γ 
Γ kα R−1 > 0.

γ 

Writing this system in matrix form we have 
� 

ψk + ασ2 kα−1 γσAB h
γ−1 

� � 
dk 

� � −kαdσ2 
A − hγ dσAB 

�
A = 

ασAB k
α−1 ψh + γσ2 hγ−1 · 

dh −hγ dσ2 
B − kαdσABB 

Then 
� 

dk 
� 

1 
= 

dh ψk ψh + ψk γσ2 hγ−1 + ψhασ2 kα−1 + αkα−1γhγ−1[σ2 σ2 
B A A B − σ2 

AB ]
� 
ψh + γσ2 hγ−1 −γσAB h

γ−1 
� � −kαdσ2


A − hγ dσAB 
�


· −ασAB k
α−1 ψk + ασ2 kα−1 · −hγ dσ2


B 

B − kαdσABA

1 
= 

ψk ψh + ψk γσ2 hγ−1 + ψhασ2 kα−1 + αkα−1γhγ−1[σ2 σ2 
B A A B − σ2 

AB ] 

A + γσAB h
2γ−1dσ2

� −(ψh + γσ2 hγ−1)kαdσ2 
B − (ψhh

γ + γhγ−1(σ2 hγ − σAB k
α))dσAB 

�
B B 

B + ασAB k
2α−1dσ2· −(ψk + ασ2 kα−1)hγ dσ2 

A − (ψk k
α + αkα−1(σ2 kα − σAB h

γ ))dσABA A

The term σ2 σ2 
AB is nonnegative as it is the determinant of the variance-covariance A B −σ2 

matrix (Cauchy-Schwartz inequality). Thus the determinant is positive. 
dhWe find that dk and are both negative. An increase in the riskiness of the own 
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dk dhreturn unambigously reduces investment. Notice that
 and are positive if 2 
B 

2 
Adσ dσ

σAB > 0 and negative if σAB < 0. If human capital becomes more risky and the two 
returns are positively correlated, then physical capital is relatively more attractive 
and investment in physical capital increases. Now suppose that the correlation of 
the returns is negative and human capital becomes more risky. Investment in human 
capital shrinks. As human capital provides insurance for physical capital, the amount 
of insurance of physical capital shrinks and so physical capital investment is reduced 
as well. 

12. With σAB = 0 and α = γ = 
2 , the first order condition for k reduces to 

� 
R − 1 

� 
1 

R 
1 
Āk− 1 

2 − Γ
 σ2 
AR = 

2 2 

and solving for k we obtain


¯ �2
� 
RA 

k = 
2R + (R − 1)Γσ2 

A 

and by symmetry 
¯ �2� 

RB 
h = 

2R + (R − 1)Γσ2 
B 

3. When σAB = 0, investment in the two different capital stocks is independent. 

4. From our previous calculations we know that if σAB = 0, σA = 0 and σB > 0, then an 
increase in σB leaves investment in physical capital unaffected and reduces investment 
in human capital. 
To derive the Euler equation, first compute the envelope condition as V �(w) = 
βRE[V �(w�)] and recall that the first order condition for consumption is U �(c) = 
βRE[V �(w�)]. Combining these two equations we have V �(w) = U �(c) and thus 

U �(c) = βRE[U �(c�)]. 

With our functional form for U this becomes 

exp(−Γc) = βRE[exp(−Γc�)] 

As c� = aw� + b it is normally distributed and so 
� 

1 
�

exp(−Γc) = βR exp −ΓE[c�] + Γ2Var(c�) . 
2


Taking logs and rearranging yields


log(βR) Γ

E[c�] − c = + Var(c�). 

Γ 2 
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Moreover Var(c�) = Var(aw� + b) = a2Var(w�) and with σAB = 0 and σA = 0 we have 
Var(w�) = σ2 h2γ . Using these facts the Euler equation can be rewritten as B 

E[c�] − c = 
log(βR)

+
Γ 

� 
R − 1 

�2 

σ2 h2γ 
B . 

Γ 2 R 

Due to the linearity of the Euler equation in E[c�] and c and the fact that all households 
invest the same amount h = H we can aggregate across households to obtain 

C � − C = 
log(βR)

+
Γ 

� 
R − 1 

�2 

σ2 
B H

2γ . 
Γ 2 R 

The expectation disappears as aggregate consumption is deterministic. In steady 
state we must have


Γ2 � 
R − 1 

�2


0 = log(βR) + σ2 H2γ


2 R B 

This together with the first order equation for human capital 

¯0 = γBHγ−1 − Γ 
R − 1 

γσ2 
B − R 

R 

determines R and H in steady state. We want to know how this depends on σ2 
B . Note 

that σ2 
B enters these equations in two places. In the Euler equation idiosyncratic risk 

in human capital investment creates a precautionary savings effect. In the first order 
condition for human capital in exerts a direct negative investment effect. 
The effect of σ2 on R and H is ambiguous. Let’s consider the scenario which An-B 

geletos and Calvet would consider the most likely. So suppose from now on that in 
the Euler equation the direct effect precautionary savings effect of σ2 on R wins out B 

and R is decreasing in σ2 
B . From the first oder equation for human capital we can 

˜
B ). The direct investment effect tends to reduce investment. Butwrite H = H(R, σ2 

through the precautionary savings effect σ2 reduces the interest rate which tends to B 

increase investment in human capital. Investment in human capital will fall if the 
investment effect dominates. Investment in physical captial will increase with the 
reduction in the interest rate caused by the precautionary savings effect, so the gen­

eral equilbrium effect of an increase in the idiosyncratic risk in human capital is to 
increase investment in physical capital. 

5. The human capital externality affects the first order condition for capital investment, 
which now becomes


¯
R = αAHη kα−1 

Maintaining our assumptions about which effects dominate from the previous part, 
an increase in σ2 reduces both R and H. Thus we have two opposing effects on B 
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investment in physical capital. The precautionary savings effect tends to increase 
investment in physical capital, but the reduction in human capital investment tends 
to reduce physical capital investment through the externality. 

6. If labor income risk corresponds to riskiness in human capital investments, and if 
human capital externalities are strong, then physical capital accumulation is likely to 
be reduced. 

Problem 2 (based on Kiyotaki and Moore (1997), Midterm Exam 2000) 

1. Before solving the problem I’ll discuss where equation (3) comes from. If a gatherer 
buys a unit of land, he pays qt today. His output tomorrow increases by G�(kt

�) and 
the unit of land can be resold for qt+1. As the discount factor is R−1, we get the 
condition 

G�(kt
�) + qt+1 

qt = 
R 

¯Now using the market clearing condition kt + k� = K to replace k� and rearraning t t 

slightly yields the first equality of equation (3). The second equality is simply a 
convenient functional form assumption. Farmers are always eager to expand, so the 
borrowing constraint will always be binding unless there are surprises. In particular 
the borrowing constraint will be binding in steady state. The steady state versions 
of (1),(2) and (3) are 

Rb = qk 

0 = ak + b − Rb 
1 1 

ηq = αk q − 
R 

The first equation gives b = qk . Substituting into the second equation yields 
R 

R − 1 
ak = qk, 

R 

Rso the steady state price of land is q∗ = a 
R−1 . Substituting this result into the third 

equation yields 
a = αk


1 
η 

so steady state land holdings of farmers are k∗ = 
� 

a 
�η 

. Plugging these results into 
α 

the first equation yields 

q∗k∗ 1 R � a �η 1 1+ηα−ηb∗ = = a = a . 
R R R − 1 α R − 1 
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1 be the steady state corresponding to a1. Similarly let k∗2. Let k∗ and b∗ 2 , q
∗ and b∗1 , q1

∗
2 2 

be the steady state corresponding to a2. 
Consider some date t ≥ s. As farmers are eager to expand and their are no more 
surprises the borrowing constraint will always be binding: 

Rbs = qs+1ks. 

Substituing into the flow of funds constraint of farmers we get 

qs+1ks 
qs(ks − ks−1) = asks−1 + − Rbs−1

R 

or slightly rearranged 

qs+1
�
qs − 

� 
ks = (as + qs)ks−1 − Rbs−1. 

R 

Substituting for qs − qs+1 from equation (3) we get 
R 

1 

αk s 
η ks = (as + qs)ks−1 − Rbs−1 

or equivalently 
η 

1+η
� 

(as + qs)ks−1 − Rbs−1 
�

ks = . 
α 

At time t this equation becomes 

η 
1+η

� 
(a2 + qt)k

∗
1 − Rb∗

�
kt = 1 . 

α 

and as Rb∗ = q∗k∗ this can also be written as 1 1 1 

η 
1+η

� 
(a2 + qt − q1

∗)k∗
�

kt = 1 . 
α 

For s ≥ t + 1 the borrowing constraint was also binding in the previous period, so 

η 
1+η

� 
(a2 + qs)ks−1 − qsks−1 

�
ks = 

α 
η 

1+η
� 

a2ks−1 
� 

= 
α 
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�

� �


Collecting equations we have


η 

1 )k
∗�� 

(a2 + qt − q∗ 1 

α 

1+η 

kt = , 

� 
a2ks−1 

� η 
1+η 

ks = s ≥ t + 1,∀
α 

1 
qs+1 + αk 

1 
η s ≥ t.∀qs = s 

R 

The next step is to log-linearize around the new steady state. For a variable xs define 
x̌s = log(xs) − log(x2). Also define Δ = log(a2) − log(a1). Let’s begin with the first 

η 

equation. Using the identity k∗ = 
� 

a
α 
2 k∗

�
2 2 

1+η we can write it as 

kt 
� 

a2 + qt − q∗ k∗
�

1 1 = 

η 
1+η 

k∗2 k∗2a2 

or � 
kt 

� 11+
η

�
qt − q∗

� 
k∗

= 1 + 1 1 

k∗2 k∗2a2 

= 
� 

a1 

�η∗
1k

k
Taking logs, noting that we get that approximately ∗

2 a2 

1 
� 

ˇ qt − q∗
1 + kt = 1 − ηΔ 

η a2 

∗
2 ∗
1 

=
 a2 
a1 

we have that approximately
R and q
Using the facts that q∗2 = a2 R−1 q

qt − q∗ R 
� 

qt − q2
∗ q∗ 1 

� 
R1 = + 2 − q∗

= (q̌t + Δ). 
a2 R − 1 q∗ q∗2 2 R − 1 

Thus the log-linearized version of the first equation is given by 
�

1 
� 

ˇ R 
� 

R 
� 

Δ.1 + kt = q̌t + 
η R − 1 R − 1 

− η

For the second equation we simply get 

ηˇ ˇks = ks−1 s ≥ t + 1. 
1 + η 

∀ 

1Using the identity q∗ = 
R q

∗
2 )2 2 + α(k∗

1 
η the third equation can be rewritten as


1 
η 
s 2 )− (k∗

1 
η .


qs − q∗ 1 qs+1 − q∗ 12 2 = + α k 
q2
∗ q∗2 q∗2R 
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1 

and so approximately


(k2 
∗) η 

� 
ks − k∗

�
2 

k∗2 

1 1 1 
q̌s = q̌s+1 + α 

R q∗2 η


1 

Using the facts that q∗ = R a2 and (k∗2 2 ) η =
 a we see that the log-linearized version 2 
αR−1 

of the third equation is 

1 
q̌s = q̌s+1 +

1 R − 1
ǩs s ≥ t. 

R η R 
∀ 

Collecting our results, the log-linearized system is 
�

1 
� 

ˇ R 
� 

R 
� 

Δ,1 + kt = q̌t + 
η R − 1 R − 1 

− η

ηˇ ˇks = ks−1 s ≥ t + 1,
1 + η 

∀ 

1 
q̌s = q̌s+1 +

1 R − 1
ǩs s ≥ t. 

R η R 
∀ 

By induction we obtain from the second equation that 

�s−t� 
η ˇǩs = kt

1 + η 

and iterating the third equation imposing lims→∞ R
−(s−t)q̌s = 0 yields 

∞
1 

� 
1 R − 1ˇ

� 

q̌t = 
� 

ks . 
Rs−t η R 

s=t 

Combining the last two results gives 

1 R−1 
η R ˇq̌t = kt.1 η1 − 

R 1+η 

Together with the first equation of the log-linearized system we now have two equa­

qt and ˆtions in the two unknowns ˇ qt. To solve, rewrite the last equation as 
�

1 − 
1 η 

� 
1 R − 1 

�
1 
� 

ˇq̌t = 1 + kt. 
R 1 + η 1 + η R η 

Substituting from the first equation of the log-linearized system this becomes 
�

1 η 
� 

1 
� �

1 − 
R − 1 

� � 

q̌t = q̌t + η Δ1 − 
R 1 + η 1 + η R 
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This can be rewritten as 

R − 1 η 1 
�

1 − 
R − 1 

�
q̌t = η Δ 

R 1 + η 1 + η R 

and so we get
 � 
R 1 

�


q̌t = Δ 
R − 1 η 

− 1

and consequently 

R 
�

1 η 
� � 

R 1 
�

ǩt = 
R − 1 

η 1 − Δ 
R 1 + η R − 1 η 

− 1

η 
�

R 1 
�� 

R 1 
�

= (1 + η) 
R − 1 

− 
R − 1 

η Δ 
1 + η R − 1 η 

− 1

η 
� 

R 
�� 

R 1 
�

= 
R − 1

+ η
R − 1 η 

− 1 Δ 
1 + η 

RNotice that there will be overshooting if 
R−1 > η, i.e. if the residual supply of land 

to farmers is not very elastic. 

Problem 3 (Savings with Incomplete Markets, General Exam 2001) 

1. If individual h specializes in storage, then 

EtUt(h) = log(1 − kt(h)) + βEt[log(δkt(h))] 

= log(1 − kt(h)) + β log(kt(h)) + β log(δ). 

If instead the individual specializes in the risky technology, then 

EtUt(h) = log(1 − kt(h)) + βEt[log( Ãt+1(h)kt(h))] �
1 1 

�
= log(1 − kt(h)) + β log(kt(h)) + β log(A + σ) + log(A − σ) . 

2 2 

2. In words, σ̂ is the counterfactual riskiness of the risky project that makes the cer­
tainty equivalent of the return to the risky project equal to the return of the storage 
technology. If we had σ = σ, then the individual would be indifferent between the ˆ

risky project and the storage technology. So ˆ
σ is implicitly defined by the equation 

1 1 
σ) + log(A − ˆlog(A + ˆ σ) = log(δ). 

2 2 
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As A > δ we know that σ̂ > 0 by Jensen’s inequality. Totally differentiating yields 

1 
� 

1 1 
� 

1 
� 

1 1 
� 

dδ 
σ 
− 

A− ˆ
dσ̂ + + dA = 

2 A + ˆ σ 2 A + ˆ σ δσ A− ˆ

which can be rewritten as


ˆ
σ A dδ 
σ + dA = . 

σ)(A− ˆ σ)(A− ˆ
− 

(A + ˆ σ) 
dˆ

(A + ˆ σ) δ 

Thus 
∂σ̂ (A + ˆ σ) 

= < 0 
∂δ 

− 
σ

δ

)(

ˆ

A− ˆ
σ 

and 
∂σ̂ A 

= > 0. 
∂A σ̂

If the storage technology has a better return, then the risky project must become 
less risky to keep the individual indifferent. If the average return of the risky project 
increases, then it must become more risky to keep the individual indifferent. 
The definition of the certainty equivalent is 

� 
1 1 

B = exp(E(log Ã)) = exp log(A + σ) + log(A− σ)

� 

= 
�

(A + σ)(A− σ). 
2 2 

∂B Clearly ∂B < 0 and 
∂A > 0. Making the project more risky reduces the certainty 

∂σ 

equivalent of its return. Increasing the average return of the project increases the

certainty equivalent.

Now consider B as a function of σ, writing B(σ). Then B(0) = A, B(ˆ
σ) = δ and 
B(A) = 0. 
The individual specializes in the risky technology if σ < ˆ σ,σ and in storage if σ > ˆ
being indifferent if σ = σ. Let’s assume that the risky project is chosen in the case ˆ

of indifference.


3. I think that the idea of this question was to get at what the risk adjusted real return 
in the economy, and that would be 

R = max[B(σ), δ], 

σ and R = δ for σ > ˆso R = B(σ) for σ < ˆ σ. 
But if we really allow a risk-free bond to be traded, then things are a bit more 
complicated. While it was impossible to invest in both the storage technology and 
the risky project at the same time, it would now be possible to invest in the riskless 
asset and the risky project at the same time. 
Let’s compute the equilibrium real interest rate under the assumption that individuals 
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invest in the risky project but not in storage, but may want to invest in the riskless 
asset. The equilibrium real interest rate must make the demand for the riskless asset 
equal to zero because the asset is in zero net supply. 
The problem of the individual is to choose the risky investment kt(h) and investment 
in the riskless asset bt(h) to maximize 

log(1 − kt(h) − bt(h)) � 
1 1 

� 

+ β log((A + σ)kt(h) + Rbt(h)) + log((A − σ)kt(h) + Rbt(h))
2 2 

The first order conditions are 

1 β 
� 

A + σ A − σ 
� 

= + 
1 − kt(h) − bt(h) 2 (A + σ)kt(h) + Rbt(h) (A − σ)kt(h) + Rbt(h) 

1 β 
� 

R R 
� 

= + 
1 − kt(h) − bt(h) 2 (A + σ)kt(h) + Rbt(h) (A − σ)kt(h) + Rbt(h) 

We can combine them to obtain 
A + σ − R A − σ − R 

+ = 0 
(A + σ)kt(h) + Rbt(h) (A − σ)kt(h) + Rbt(h) 

Now in equilibrium it must be the case that bt(h) = 0, so this condition reduces to 

A + σ − R A − σ − R 
+ = 0 

(A + σ) (A − σ) 

Solving this for R and expressing the result as a function of σ we get 

R(σ) = 
(A + σ)(A − σ) 

. 
A 

Notice that R(σ) < B(σ). This makes a lot of sense. If the interest rate where B(σ), 
then a risk adjusted return of B(σ) could be achieved simply by putting everything 
into the riskless asset. But by combining the risky project with some of the riskless 
asset, it would be possible to do strictly better then B(σ). But with the interest rate 
R(σ) above, it is undesirable to put anything into the riskless asset, and then the risk 
adjusted return is one again B(σ). Once again this is an equilibrium only if B(σ) ≥ δ 
or equivalently σ ≤ σ̂, because otherwise given the interest rate R(σ) it would be 
optimal to put all savings into the storage technology (using the riskless asset would 
be inferior as B(σ) ≥ δ implies R(σ) < δ). 
Now suppose that σ > σ̂. Is it an equilibrium for all individuals to invest in storage? 
If so, then the interest rate must be R = δ. But if the interest rate is δ, then an 
individual could get a risk adjusted return higher then δ by combining the riskless 
asset and a little bit of the risky project. So investing in storage can never be an 
equilibrium, and consequently an equilibrium does not exist if σ > σ̂. 
So from now on let’s just consider R(σ) = max[B(σ), δ]. 
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4. Substituting the optimal decision between risky project and storage into the objective, 
the problem reduces to the maximization of 

log(1 − kt(h)) + β log(R(σ)kt(h))


and the solution

β 

kt(h) = 
1 + β


is independent of R(σ).


5. If σ ≤ ˆ o βσ, then ct+1(h) = Ãt+1(h) 
1+β and taking the average across individuals we 

o β y 1get 
� 

ct+1(h)dh = A
1+β and as ct (h) = for all individuals we get gt = βA. On

1+β 
oσ, then for all individuals ct+1(h) = δ β and consequently the other hand, if σ > ˆ

1+β


gt = βδ. Thus as a function of σ we have


� 
βA for σ ≤ σ̂, 

g(σ) = 
βδ for σ > σ̂. 

6. (a) The coefficient of relative risk aversion is γ and 1 
θ is the elasticity of intertemporal 

substitution. 

(b) As � 
1 1 

� 1 
1−γ 

B(σ) = (A + σ)1−γ (A − σ)1−γ+ 
2
 2 

we have 
∂B 1 

= B(σ)γ [(A + σ)−γ − (A − σ)−γ] < 0. 
∂σ 2 

We would expect B to me more responsive to changes in σ if γ is large. 

(c) We would expect an increase in the coefficient of relative risk aversion to reduce 
the risk adjusted return, that is ∂B < 0. Recall that ˆ

∂γ σ is implicitly defined by 
σ) = δ. Increasing γ reduces the left hand side, so σ must fall to restore B(ˆ ˆ

∂σ̂equalitiy, i.e. 
∂γ < 0. 

(d) Now savings are chosen by maximizing 

(1 − kt(h))1−θ + β(R(σ)kt(h))1−θ 

and the solution is 

kt(h) = 
β


1 )1−θ 
1 (R(σ)θ 

1 + β

1 )1−θ(1 

R(σ)θ 

.


Of course the saving rate is not at all sensitive to the interest rate if θ = 1. For 
θ close to zero it is quite sensitive and it is somewhat sensitve for large θ. 

13 



1( θR(σ)
1 
θ

−1) 
−1) 

and taking the average across oσ, then ct+1(h) = Ãt+1(h)(e) If σ ≤ ˆ	 β 

1+β 
1( θR(σ)
1( θR(σ)

1 
θ

1 
θ 

−1)βoindividuals we get 
� 

ct+1(h)dh = A y 1 
t (h) =and as c


1 
θ 

1( θR(σ)
−1) 1 

θ 
1( θR(σ)
−1)1+β 1+β 

1(R(σ) θ 
1 
θ

−1).for all individuals we get gt = Aβ On the other hand, if σ > σ̂, then 

gt = β

1(δ θ 

1 
θ

−1)δ. Thus as a function of σ we have 
� 

Aβ

1(R(σ) θ 

1 
θ

−1) for σ ≤ σ̂, 
σ > σ̂. 

g(σ) = 
(βδ) 

1 
θ for 

The growth rate of consumption varies with σ only as long as σ < σ̂. If θ < 1, 
then an increase in σ will reduce R(σ) and thus consumption growth. If θ > 1, 
then consumption growth is increasing in σ. Of course in both cases there is 

σ. An increase in γ shortens the intervall [0, ˆstill a downward jump at ˆ σ] in 
which g(σ) varies with σ, and the counterpart of this is that within this intervall 
consumption growth becomes more sensitive to changes in σ 

Problem 4 (Government and Growth in the Ramsey Model) 
Consider a representative consumer who maximizes 

max 
� ∞ 

0 
e−ρt c

1−θ − 1 
1 − θ 

dt (1) 

subject to 
ȧ = (1 − τK )ra + (1 − τL)w − c + v	 (2) 

where c denotes consumption, a denotes assets, r is the interest rate, w is the wage rate, 
τK is the tax rate on capital income, τL the tax rate on labor income, and v a lump-sum 
per capita transfer. The government spends g per capita in order to blow up Pacific islands 
(i.e. g does not affect utility or production). The government budget is 

g + v = τK ra + τLw 

The market clearing for assets is 
k = a 

The production function is Cobb-Douglas, y = kα , implying r = αkα−1 and w = (1 − α)kα . 

1. Write down the resource constraint of the economy. 

2. Write down	 the FOCs for maximization of the consumer, taking all fiscal policy 
variables as given. 
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3. Use a phase diagram in (k, c) to show how the paths of k and c change when the 
government surprises people by permanently raising the values of τK and g. What 
happens to the steady state value of k? 

4. Redo part c.) for the case in which the government raises τL and g (without changing 
τK ). What happens to the steady state value of k? Explain the differences from those 
of part c.) 

5. Redo part c.) for the case in which the government raises τL and v (without changing 
τY and g). What happens to the steady state value of k? Explain the differences 
from those of parts c.) and d.) 

6. Finally, assume that τL = v = 0 so that g = τK y. Discuss the adjustment dynamics 
due to the following change in fiscal policy: at time t = T1, the government announces 
that spending increases from g = 0 to g = g > 0 until t = T2. 

7. Redo part f.), but now assuming the following policy change:	 at time t = T1, the 
government announces that from t = T2 > T1 until t = T3 > T2 spending increases 
from g = 0 to g = g > 0. What is different? 

8. Discuss how your answers to all above parts would change if labor supply was en­

dogenous. 
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