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1 Self Insurance

• Exogenous stochastic income stream yt. yt is i.i.d., with support [ymin, ymax],

ymax > ymin ≥ 0, and c.d.f. Ψ.

• Preferences:
E0U = E0

∞X
t=0

βtU(ct)

where U 0 > 0 > U 00; and, unless otherwise stated, U 0(0) =∞, U 0(∞) = 0.

• Budget and borrowing constraint:

ct + at = (1+ r)at−1 + yt

ct ≥ 0

at ≥ 0

which implies

ct ≤ (1+ r)at + yt+1
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• Remark: We could relax borrowing constraint to

at ≥ −bt

where bt is the borrowing limit. Either exogenous to the economy; or endoge-

nous.

E.g.:

bt = inf
{yt+j}∞j=0

∞X
j=0

(1+ r)−(j+1)yt+j =
ymin
r

• Define cash in hand as
zt ≡ (1+ r)at + yt

It follows that

zt+1 = (1+ r)(zt − ct) + yt+1

and

0 ≤ ct ≤ zt

• We write the Belman equation as:

V (z) = max
0≤c≤z

U(c) + β

EV (z̃)z }| {Z
V (z̃) dΨ(y)

s.t. z̃ = (1+ r)(z − c) + y

We denote by C(z) the argmax of the above and A(z) = z − C(z).

• The value function V is the fixed point of the corresponding operator. Obvi-

ously, V inherits the properties of U. That is, V 0 > 0 > V 00, V 0(0) = −∞,

V 0(∞) = 0. Also, C(z) and A(z) are non-decreasing.

• The FOC:
U 0(ct) ≥ β(1+ r)EtV

0(zt+1), = if ct < zt
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The Envelope Condition:

V 0(zt) = U 0(ct)

Euler equation:

U 0(ct) ≥ β(1+ r)EtU 0(ct+1), = if ct < zt

Alternatively

V 0(zt) ≥ β(1+ r)EtV
0(zt+1), = if Etzt+1 > (1+ r)zt + Etyt+1

1.1 Random Walk and Precautionary Motive

• Consider β(1 + r) = 1, that is, that is, r = ρ ≡ β−1 − 1. If there were no

uncertainty (and eventually no binding borrowing constraint), then

U 0(ct) = U 0(ct+1) or V 0(zt) = V 0(zt+1)

implying

ct+1 = ct = c∗ and zt+1 = zt = z∗

• Suppose now that there is risk in consumption, but there is no borrowing con-
straint and r = ρ. Then, the Euler condition impies

EtU 0(ct+1) = U 0(ct) and EtV 0(zt+1) = V 0(zt)

If in addition utility is quadratic, implying that U 0 and V 0 are linear, then

Etct+1 = ct and Etzt+1 = zt

That is, consumption and wealth follow a random walk.

• But if U 000 > 0 and Vartct+1 > 0, then EtU
0(ct+1) = U 0(ct) implies

Etct+1 > ct

The precautionary motive for saving.
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1.2 The Uc Supermartingale

• Consider again the general case. Define

Mt ≡ βt(1+ r)tU 0(ct) = βt(1+ r)tV 0(zt)

Then, by the Euler condition,

Et(Mt+1 −Mt) ≤ 0

That is, Mt is a supermartingale. Because Mt is non-negative (actually strictly

positive), the supermartingale convergence theorem applies. The latter states

thatMt converges almost surely to a non-negative random variableM∞, Mt →a.s.

M∞.

• Suppose β(1 + r) > 1, that is, r > ρ ≡ β−1 − 1. Then, the fact that Mt

converges a.s. while βt(1 + r)t diverges to +∞ implies that U 0(ct) = V 0(zt)

must a.s. converge to 0. That is, ct and zt diverge a.s. to +∞.

• Suppose next β(1 + r) = 1, that is, r = ρ ≡ β−1 − 1. We want to argue again

that ct and zt diverge a.s. to ∞. Suppose to the contrary that there is some

upper limmit zmax < ∞ such that zt+1 ≤ zmax = (1 + r)A(zmax) + ymax. At

zt = zmax, then

V 0(zt) ≥ β(1+ r)EtV 0(zt+1)⇒
V 0(zmax) ≥ EtV

0((1+ r)A(zmax) + yt+1)

> inf
yt+1
{V 0((1+ r)A(zmax) + yt+1)} =

= V 0((1+ r)A(zmax) + ymax) = V 0(zmax).

That is, V 0(zmax) > V 0(zmax), which is a contradiction. The resolution is

VartV
0(zt+1) = 0, which requires either the variance of yt+1 to vanish, or other-

wise zt+1 to diverge a.s. to +∞.
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• Suppose finally β(1 + r) < 1, that is, r = ρ ≡ β−1 − 1. Then, as long as

VartV
0(zt+1) = VartU 0(ct+1) remains finite, thenMt will automatically converge

a.s. to zero, and we are fine.

• We conclude that A(z0) = ∞ if r ≥ ρ, but A(z0) can be finite if r < ρ. With

CARA, there is a unique r < ρ for which A(z0) is finite. With deminishin ARA

(such as CRRA), A(z0) is finite for every r < ρ.

• For stochastic r, Chamberlain and Wilson (1984/2000) prove that z diverges to
infinite as long as Er exceeds ρ.

2 CARA-Normal Example

2.1 Individual behavior

• Suppose β(1+ r) < 1.

• Suppose yt ∼ N(y, σ2).

• Suppose CARA preferences,

U(c) = − 1

Γ
exp(−Γc)

U 0(c) = exp(−Γc)

• Show that there are a, b, â, b̂ such that

V (z) = − exp(−âz − b̂)

C(z) = az + b

• Because c is normal and U 0 is exponential,

EtU 0(ct+1) = U 0(Etct+1 − ΓVart(ct+1)/2)
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• The Euler condition,
U 0(ct) = β(1+ r)EtU 0(ct+1),

thus reduces to

Etct+1 − ct =
1

Γ
ln[β(1+ r)] +

Γ

2
Vart(ct+1)

• Combining with C(z) = az + b and Vart(zt+1) = σ2, we infer Vart(ct+1) = a2σ2

and thus

Etct+1 − ct =
1

Γ
ln[β(1+ r)] +

Γ

2
a2σ2

• For a steady state, Etct+1 − ct = 0, we thus need

ln[β(1+ r)] = −(Γaσ)
2

2

that is

r = ρe−(Γaσ)
2/2 < ρ

• Hence, the resolution to the risk-free rate puzzle.

2.2 Moving from CARA to CRRA

• A disturbing property of our CARA specification is that risk aversion is inde-
pendent of wealth. Indeed, absolute risk aversion is Γ, but relative risk aversion

is Γct. It is more reasonable to assume that relative rather than absolute risk

aversion is constant. Therefore, lets us fix Γct = γ, that is, calibrate Γ as

Γ = γ/ct, where γ measures relative risk aversion.

• Then, the Euler condition becomes
Etct+1
ct
− 1 =

1

γ
ln[β(1+ r)] +

γ

2

Vart(ct+1)

c2t
.
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• Note that Vart(ct+1) = a2σ2, c2t = (azt+b)
2 ≈ a2z2t , and lnβ(1+r) ≈ r−ρ where

ρ ≡ 1/β − 1. Letting 1/γ = θ for the elasticity of intertemporal substitution,

we conclude
Etct+1
ct

= 1+ θ(rt − ρ) +
γ

2

µ
σ

zt

¶2
.

That is, consumption growth (savings) are increasing in the difference between

the interest rate and the dicount rate and increasing in the income risk relative

to the level of wealth.

2.3 Towards General Equilibrium

• For consumption and wealth to be stationary, namely Etct+1/ct = 1, we need

θ(rt − ρ) = −γ
2

µ
σ

zt

¶2
,

which requires rt < ρ. Equivalently,

zt =

s
σ2/γ

2θ(ρ− rt)
≡ Z(rt).

• Z(r) corresponds to the aggregate supply of savings: It say what is the station-

ary level of wealth for any given interest rate. Note that Z(r) ∈ (0,∞) and
Z 0(r) > 0 for all r ∈ [0, ρ), with Z(0) <∞ and Z(r)→∞ as r → ρ.

• On the other hand, the optimal level of investment is pinned down by the
equality of the MPK with the interest rate:

rt = f 0(Kt).

Equivalently,

kt = (f
0)−1(rt) ≡ K(rt).

• K(r) corresponds to the aggregate demand for capital. Note thatK(r) ∈ (0,∞)
and K 0(r) < 0 for all r ∈ (0, ρ], with K(r)→∞ as r → 0 and K(ρ) <∞.
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• A steady state corresponds to an intersection of the curves Z(r) andK(r). That
is, the steady-state interest rate and capital stock are given by r∗ and k∗ such

that Z(r∗) = K(r∗) = k∗.

• By the properties of Z and K, the steady state exists and is unique.

• Moreover, for any σ > 0, the steady state is r∗ < ρ and k∗ > K(ρ). That is, the

interest rate is lower and the capital stock is higher under incomplete markets

than under complete markets.

• Finally, an increase in σ (labor income risk) increases the supply of savings Z(r)
without affecting the demand for investment K(r). Therefore, r∗ is decreasing

in σ, and k∗ is increasing in σ.

• The above analysis is a heuristic representation of the more formal and exact
analysis in Aiyagari (1994).

8


