1.6 Business cycle applications

- Outside finance premium: is it countercyclical?
- Investment volatility: is there amplification/propagation?
- general answer: it depends on the shocks (persistence)
- We focus on amplification

ullet almost temporary shock ho=.05

Figure 10:

ullet more persistent shock ho=.1

Figure 11:

ullet persistent shock ho=.5

Figure 12:

• Related empirical micro issue: do firms with tighter constraints respond more/less to cash flow shocks?

• Fazzari, Hubbard, Petersen (1998): Yes (see table before)

- Kaplan and Zingales:
 - in theory: maybe
 - in empirics: no

• Crucial macro issue: are contracts state-contingent?

Balance sheet

$$R_t k_t - b_t$$

Investment

$$k_{t+1} = \frac{R_t k_t - b_t}{q_t^m - \theta \beta_C \mathbb{E}\left[R_{t+1}\right]}$$

ullet question is b_t sufficiently responsive to shocks?

1.6.1 Amplification

- In Kiyotaki-Moore no state contingent contracts
- Feed-back investment-asset prices in KM
- Recall that

$$R_t = A_t F_1 \left(K_t, 1 \right) + q_t^o$$

- Suppose we are in region where $R_t k_t b_t$ close to zero/bankruptcy
- with non-state contingent contracts that may happen

ullet then small positive productivity shock increases k_{t+1} more than proportionally

ullet this increases $q_t^o ->$ larger increase in K_{t+1} and so on

• Krishnamurthy (2003): it all depends on ability to condition on aggregate shocks

 Detour on models of Costly 	y State Verification
--	----------------------

- Caveat: CSV helps explain why non-state contingent debt is used at the micro level, but it does not really help at the macro level
- In general aggregate shocks seem relatively easy to condition upon: why sometimes balance sheets very exposed?

1.6.2 A failure of diversification

- Three period version
- No adjustment costs
- Risk averse consumers $\mathbb{E}\left[u\left(c_1+c_2\right)\right]$

• In period 0 no investment, no consumption, only financial contracting ex ante

- Shock in period 1: s = H, L
- ullet In period 1 entrepreneurs have initial endowment $\omega_s^E \in \{\omega_H, \omega_L\}$
- ullet Consumers have endowment ω^C_s in period 1 and work in period 2
- No aggregate shock

$$\omega_s^C + \omega_s^E = 1$$

Entrepreneurs

• In period 1: Invest $k_{2,s}$

• In period 2: produce $F\left(k_{2,s},l_{2,s}\right)-w_sl_{2,s}$

• Balance sheet of the entrepreneur at date 1

$$n_{1,s} = \omega_s^E + z_s^E$$

- ullet state contingent contracts $z_{\mathcal{S}}$ are available at date 0
- question: will they hedge?

Consumer problem

$$\max \qquad \sum \pi_s u \left(c_{1,s} + c_{2,s} \right)$$

$$s.t. \qquad \sum q_s z_s^C \leq \mathbf{0}$$

$$c_{1,s} = \omega_s^C + z_s^C$$

$$c_{2,s} = w_s$$

Entrepreneur problem

$$\begin{array}{ll} \max & \sum \pi_s \left(c_{1,s}^E + c_{2,s}^E \right) \\ s.t. & \sum q_s z_s^E \leq \mathbf{0} \\ & c_{1,s}^E + k_{2,s} = \omega_s^E + z_s^E \\ & c_{2,s}^E = R_{2,s} k_{2,s} \end{array}$$

- $\theta = 0$ only internal funds can be used
- Value function of entrepreneur now is simply

$$V\left(\omega_{s}^{E}+z_{s}^{E},s\right)=R_{2,s}\left(\omega_{s}^{E}+z_{s}^{E}\right)$$

as long as $R_{2,s} \geq 1$.

Reduced form consumer's problem

$$\max \sum \pi_s u \left(\omega_s^C + z_s^C + w_s\right)$$

$$s.t. \sum q_s z_s^C \le 0$$

Reduced form entrepreneur's problem

$$\max \sum \pi_s R_{2,s} \left(\omega_s^E + z_s^E \right)$$

$$s.t. \sum q_s z_s^E \le 0$$

market clearing: financial market

$$z_s^C + z_s^E = \mathbf{0}$$

labor market

$$R_{2,s} = F_1(K_s, 1), \quad K_s = \omega_s^E + z_s^E$$

Equilibrium

$$\frac{\pi_L u' \left(\omega_L^C + z_L^C + w_L\right)}{\pi_H u' \left(\omega_H^C + z_H^C + w_H\right)} = \frac{q_L}{q_H} = \frac{\pi_L R_{2,L}}{\pi_H R_{2,H}}$$

- multiple equilibria possible
- symmetric equilibrium always exists: full diversification

$$K_H = K_L = \sum \pi_s \omega_s^E$$

- ullet asymmetric equilibrium $K_H > K_L$ (also the opposite possible!)
- pecuniary externality

Example

$$egin{aligned} \pi_L &= \pi_H = 1/2 \ &u\left(c
ight) \; = \; c^{1-\gamma} \ &F\left(k,1
ight) \; = \; Ak^{lpha} \ &\omega_L^E \; = \; 0, \omega_H^E = 1 \ &\omega_L^C \; = \; 1, \omega_H^C = 0 \ &z \; = \; z_L^E \ &q \; = \; rac{q_L}{q_H} \end{aligned}$$

Two relations

$$\frac{u'(1-z+Az^{\alpha})}{u'(qz+A(1-qz)^{\alpha})} = q$$

$$\frac{z^{\alpha-1}}{(1-qz)^{\alpha-1}} = q$$

Figure by MIT OCW.

Examples:

- US vs Japan asset price bubble
- real estate concentrated in banks -> feed back

Cite as: Guido Lorenzoni, course materials for 14.462 Advanced Macroeconomics II, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

	stock	market	diffused	_ >	nο	feed	hack
•	SLUCK	HIGHNEL	unnasca		-110		Dack

• Dollarized economies: consumers want deposits in US\$ to be safe, then banks lend in US\$, then companies exposed to XR risk, wages more volatile, consumers want deposits in US\$...

- very different balance sheet effects
- "financial fragility" difficult to assess, credit chains...