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14.471: Fall 2012: Recitation 9: Pareto Efficient Income Taxation
 

Daan Struyven 

November 9, 2012 

Questions: When is an income tax system efficient? How to derive the test for optimal income taxation from 
“Werning, Iván., 2007. Pareto efficient income taxation”? What is the intuition for the different terms in 
the efficiency test? 

Note: The NBER PE 2007 Meeting slides associated to Iván’s 2007 paper 

Definition of efficient allocation 

Proposition. An allocation {c (θ) , y (θ)} is pareto efficient only if it solves the problem 

ˆ θ 

max (y (θ) − c (θ)) dF (θ) 
y(θ),v(θ) θ 

s.t.	 U (c (θ) , y (θ) , θ) ≥ U (c (θ�) , y (θ�) , θ) ∀θ,θ � 

U (c (θ) , y (θ) , θ) ≥ v (θ) ∀θ 

Proof. Suppose not. Let {c
� (θ) , y

� (θ)} be a superior allocation. The star allocation is incentive compatible
by construction of the problem. It is resource feasible because it increases the objective and the objective 
is the excess resources available. Furthermore, it is at least as good for all agents as the original allocation 
and has relaxed the resource constraint. Therefore, provided the value function is continuous in at least one 
v (θ), it’s possible to allocate the excess resources in a way that generates a pareto improvement. 
We now work to simplify the problem. First, observe the that an equivalent way of writing the incentive
constraints is θ = arg maxU (c (θ�) , y (θ�) , θ) . Define v (θ) ≡ maxU (c (θ�) , y (θ�) , θ) . The envelope theorem 

θ�	 θ� 

then implies that v� (θ) =  Uθ (c (θ) , y (θ) , θ) . 

The intuition for the dual is that we maximize net resources (we can redistribute them) subject to incentive
 
and minimal utility level targets (and monotonicity).
 
As in lecture we change variables from (c, y) to (v, y) . Define c (θ) =  e (v (θ) , y (θ) , θ) . This function exists
 
and is well-behaved with standard assumptions on U (since e is the inverse of U with respect to the first
 
argument).
 
Lemma. Global IC is equivalent to local IC and y (θ) nondecreasing.
 
The modified problem using the change of variables and the local IC is
 

ˆ θ 

max (y (θ) − e (v (θ) , y (θ) , θ)) f (θ) dθ 
v(θ),y(θ) θ 

s.t.	 v � (θ) =  Uθ (e (v (θ) , y (θ) , θ) , y (θ) , θ) 

v (θ) ≥ v (θ) 

y (θ) nondecreasing. 
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2 Helpful results from consumer’s problem 

We will derive first order conditions for this problem and manipulate them into an interpretable form. We
start by deriving several results that will be of use in the manipulation. The formal equilibrium definition 
for this problem requires that consumers solve the associated problem: 

max U (c, y,θ ) s.t. c ≤ y − T (y) . 
c,y 

Substituting the budget constraint into the utility function and taking a first order condition in y, 

Uc (y − T (y) , y,  θ) (1 − T � (y)) + Uy (y − T (y) , y,  θ) = 0. 

Define τ (y) ≡ T � (y) . Then the first order condition can be expressed simply as 

Uy1 − τ (y) = − ≡ MRS  (c, y,θ ) . (1)
Uc 

Define w (y) = 1 − τ (y) , the after-tax marginal wage at income y. The first order condition can then also 
be written as 

wUc (y − T (y) , y) + Uy (y − T (y) , y) = 0. 

Expressed as a function of w alone and differentiating with respect to w, 

dy dy
Uc + wUcc (1 − T �) 

dy + wUcy + Uyc (1 − T �) 
dy + Uyy = 0. 

dw dw dw dw 

Solving for dy 
, this implies dw
 

dy Uc
= − . 
dw Ucc (1 − T �)2 + 2Ucy (1 − T �) + Uyy 

Therefore the local elasticity of earnings with respect to the after tax wage is given by 

w 
ε

� (y) =  
∂

∂

w

y 
y w 

Uc (1 − T �) /y= − 
Ucc (1 − T �)2 + 2Ucy (1 − T �) + Uyy 

1/y 
Ucc Uyy 

= − 
(1 − T �) + 2 Ucy + 

. 
Uc Uc Uc(1−T �) 

The form we will later desire is 

1 Ucc Uyy− = (1 − T �) + 2Ucy + (2)
ε� y Uc Uc Uc (1 − T �) . 

w

We can also think of the consumer allocation as a function of θ. Note that c (θ) =  y (θ) − T (y (θ)) , which 
� �implies c = y

� − T �
y . Then 

c �/y
� = 1 − T � = MRS  = −Uy/Uc (3) 

using the results from the consumer problem shown in equation (1) above. 

By definition, v = U (e (v, y,θ ) , y,  θ) . Therefore, differentiating with respect to y, 

0 = Ucey + Uy 

Uy⇒ ey = − = MRS,  (4)
Uc 
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and, differentiating with respect to v, 

1 =  Ucev 

1 ⇒ ev = . (5)
Uc 

Next we do some algebra on the utility functions themselves. Observe that 

∂MRS ∂ 
� 

Uy (c, y,θ ) 
�

� � 
y = − y

∂c ∂c Uc (c, y,θ ) 
UcUyc − UyUcc �= − y

U2 
c 

Uy
Uyc − Ucc Uc �= − y

Uc 
� c

Uyc + Ucc y� �= − y
Uc 
� + U �

Ucyy ccc= − . (6)
Uc 

and 

∂MRS ∂ 
� 

Uy (c, y,θ ) 
� 

−Uc = −Uc − 
∂θ ∂θ Uc (c, y,θ ) 

UyθUc − UcθUy= Uc 
U2 

c 

Uy= Uθy − Uθc 
Uc 

= Uθy + Uθcey. (7) 

Returning to the first order condition for the consumer problem 

Uc (y − T (y) , y, θ) (1  − T � (y)) + Uy (y − T (y) , y, θ) = 0. 

and expressing it as a function of θ, we can totally differentiate the LHS and the RHS with respect to θ to 
obtain: 

[Ucc (y − T (y) , y, θ) (1  − T � (y)) y � + Ucy y � (θ) +  ucθ] (1  − T � (y)) 

−Uc (y − T (y) , y, θ) T �� (y) y � + Uyc (1 − T � (y)) y � + Uyyy � + Uyθ = 0. 

Simplify: 

Ucc (y − T (y) , y, θ) (1  − T � (y))2 
y � + Ucyy � (θ) (1  − T � (y)) 

+Ucθ (1 − T � (y)) − Uc (y − T (y) , y, θ) T �� (y) y � + Uyc (1 − T � (y)) y � + Uyyy � + Uyθ = 0. 

Solving for y� implies 
Ucθ (1 − T �) +  Uyθ 

y � (θ) =  − . (8)
Ucc (1 − T �)2 + 2Ucy (1 − T �) − UcT �� + Uyy 
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Using equations (1), (4), and (7), in sequence 

Uy
Ucθ (1 − T �) +  Uyθ = −Ucθ + Uyθ

Uc 

= Ucθey + Uyθ 

∂MRS = −Uc . 
∂θ 

Since by equation (1) again 1 − T � = MRS,  

∂MRS (1 − T �) 
∂ log MRS  −Uc = −Uc . 

∂θ ∂θ 

Therefore, equation (8) for y� (θ) can be rewritten 

(1 − T �) ∂ log MRS  
∂θ

y � (θ) =  −
−Uc 

Ucc (1 − T �)2 + 2Ucy (1 − T �) − UcT �� + Uyy 

∂ log MRS  
∂θ= . 

Ucc Uyy(1 − T �) + 2 Ucy − T �� +Uc Uc 1−T � Uc(1−T �) 

Consulting equation (2) for y
−
ε
1 
� we see that 
w 

� (θ) =  
− ∂ log MRS  

∂θ
y 1 . (9)

+ T �� 

yε� 1−T � 
w 

Pareto Problem 

We now tackle the pareto problem. We ignore the nondecreasing requirement and set up the Lagrangian 

ˆ ˆθ θ 

L = [y (θ) − e (v (θ) , y (θ) , θ)] f (θ) dθ + µ (θ) (v � (θ) − Uθ (e (v (θ) , y (θ) , θ) , y (θ) , θ)) dθ 
θ θ ˆ θ 

+ ξ (θ) (v (θ) − v (θ)) dθ. 
θ 

We intend to optimize with respect to v (θ) , making it desirable to eliminate the v� (θ) from the Lagrangian. 
Integrating by parts, 

ˆ ˆθ θ 

µ (θ) v � (θ) dθ = µ
�
θ
� 

v
�
θ
� 

− µ (θ) v (θ) − µ � (θ) v (θ) dθ. 
θ θ 

Substituting back into the original Lagrangian and replacing the multiplier ξ(θ) =  λ(θ)f(θ) 1 on the minimal η 

utility target constraints (to build 1 big integral density constraint) 

ˆ ˆθ θ 

L = [y (θ) − e (v (θ) , y (θ) , θ)] f (θ) dθ + µ
�
θ
� 

v
�
θ
� 

− µ (θ) v (θ) − µ � (θ) v (θ) dθ 
θ θ ˆ ˆθ θ1 − µ (θ) Uθ (e (v (θ) , y (θ) , θ) , y (θ) , θ) dθ + λ (θ) f (θ) (v (θ) − v (θ)) dθ. 

ηθ θ 
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Maximize wrt y(θ): The first order condition with respect to y (θ) for interior θ is 

(1 − ey ) f − µ [Uθcey + Uθy] = 0. 

Combining equations (4) and (1) we see that 1 − ey = τ and from equation (7) directly Uθcey + Uθy = 
∂MRS −Uc . Substituting these relationships into the first order condition yields ∂θ 

∂MRS 
τf = −µUc 

∂θ 

or, equivalently, 
τ ∂ log (MRS)

f = −µUc . (10)1 − τ ∂θ 

Observe from the first version of the equation that the sign of µ is the same as the sign of τ given the single 
crossing assumption ( ∂MRS 

< 0).∂θ 

Maximize wrt v(θ): The first order condition for v (θ) for interior θ is 

−evf − µ � − µUθcev + ξ = 0. 

From equation (5), ev = U
−1 

. Making this substitution and multiplying through by Uc,c 

−f − Ucµ � − µUθc + ξ = 0. 

Since Lagrange multipliers must be weakly positive 

−Ucµ � − µUθc ≤ f. (11) 

Define our new multiplier µ̂ (θ) = Uc (c (θ) , y  (θ) , θ) µ (θ) . (converting units of multiplier into goods/dollars) 

� 
µ̂ = Ucµ � + µ (Uccc � + Ucy y � + Ucθ) . 

Rearranging terms 

−Ucµ � − µUθc = −µ̂
� + µ (Uccc � + Ucyy �) 

�
Uccc

� + Ucy y= −µ̂
� + µ̂ . 

Uc 

Substituting into the first order condition for v (θ) , equation (11), 

�
Uccc

� + Ucyy−µ̂
� + µ̂ ≤ f. 

Uc 

Using equation (6) to replace the fraction we obtain 

−µ̂
� − µ̂

∂MRS 
y � ≤ f. 

∂c 

Combining the conditions based on FOC’s Thus we have the system of equations (with arguments 
for clarity) 

µ (θ) ∂MRS (c (θ) , y  (θ) , θ)−µ̂
� (θ) − ˆ y � (θ) ≤ f (θ) (12)

∂c 
τ (θ) 

µ (θ) ∂ log MRS  (c (θ) , y  (θ) , θ) 
1 − τ (θ)f (θ) = −ˆ . (13)

∂θ 
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As discussed in class, we don’t know f (θ) but since y (θ) is nondecreasing we do know the output distribution 
(Saez identification) H (y (θ)) = F (θ) and therefore h (y (θ)) y� (θ) =  f (θ) . This allows us to write the 
optimality condition that holds with equality, equation (13), as 

τ (θ) 
µ (θ) 

∂ log MRS  (c (θ) , y (θ) , θ) 
1 − τ (θ) 

h (y (θ)) y � (θ) =  −ˆ . 
∂θ 

Substituting from equation (9) for y� (θ) , 

1 − 
τ (

τ

θ

(
) 
θ) 

h (y (θ)) 
− ∂ log MRS  

µ (θ) 
∂ log MRS∂θ 

T �� = −ˆ .1 + ∂θ 
yε� 1−T � 

w 

Canceling the derivatives of log MRS  and multiplying by −1, 

τ (θ) 1 
1 − τ (θ) 

h (y (θ)) = µ̂ (θ) . 
+ T �� 

yε� 1−T � 
1 

w 

Define the virtual density to be 
h (y)

h
� (y) =  T �� . (14)

1 +  yε� 
w 1−T � 

Then the condition becomes 
τ (θ) 

1 − τ (θ) 
yε

� 
h

� (y (θ)) = µ̂ (θ) .w

Define µ̂̂ (y) = µ̂
�
y

−1 (y)
� 

to change variables from θ to y. Then the condition is 

T
� (y) 

1 − T � (y) 
yε

� (y) h� (y) = ˆ̂µ (y) . (15)w 

Written in logs � 
T

� (y) 
�

log ˆ̂µ (y) = log + log (y) + log (ε� (y)) + log (h� (y)) ,w1 − T � (y) 

and therefore (differentiating with respect to log y) 

d log 
� 

τ 
� 

µ̂̂
� (y) 1−τ + 1 +  

d log (ε� (y)) d log (h� (y))w 
y = + . (16) 

µ̂̂ (y) d log y d log y d log y 

Returning to the optimality condition holding with inequality, equation (12), and dividing through by y� (θ) , 

µ̂
� (θ) 

µ (θ) 
∂MRS f (θ)− ≤ 

y� (θ) 
− ˆ

y� (θ) 
. 

∂c 

The RHS is then seen to be h (y (θ)) . Using ’ that the derivative of the inverse is the inverse of derivative’-rule, 
we can differentiate the definition of µ̂̂(θ) = µ̂(Y −1(y)): 

µ̂
� �

y
−1 (y)

� 

µ̂̂
� (y) =  

y� (y−1 (y)) 
. 

Thus the inequality condition can be rewritten 

µ (y) 
∂MRS −µ̂̂

� (y) − ˆ̂ ≤ h (y) . 
∂c 

Substituting via the definition of the virtual density, equation (14), 

T
�� 

µ (y) 
∂MRS 

� � 

−µ̂̂
� (y) − ˆ̂ ≤ h� (y) 1 +  yε

� 
.w

∂c 1 − T � 
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Dividing through by µ̂̂ and multiplying by y 

T �� 
� 

µ̂̂
� (y) ∂MRS h

� (y) 
�

1 +  yε
�
w 1−T � 

− y − y ≤ y. 
µ̂̂ ∂c µ̂̂

Finally, using equation (15) for µ̂̂and equation(16) for the first term, 

d log 
� 

τ 
�	 

yh
� (y) 

�
1 +  yε

� T �� 
� 

1−τ d log (ε� (y)) d log (h� (y)) ∂MRS	 w 1−T � 
w− − 1 − − − y ≤	 . 

τ (θ)d log y d log y d log y ∂c 
1−τ (θ) yε� h� (y (θ))w

This simplifies to 

 
d log 

� 
τ 

�	  
τ (θ) ε

�	 1−τ d log (ε� (y)) d log (h� (y)) ∂MRSw	 w 
T �� 

− − 1 − − − y ≤ 1,1 − τ (θ) 1 +  yε� d log y d log y d log y ∂c w 1−T � 

Intuition: Laffer argument: 

•	 Intuition for each term/Laffer argument with following experiment: 

–	 Draw (Y, T ) income-taxation system and draw the tax schedule 

–	 Reduce the tax locally at a point P 

–	 From the left of the point P , the “climbers” will work more, earn more and pay more taxes 

–	 From the left of the point P , the “fallers” will work less, earn less and pay fewer taxes 

•	 High �∗ reduces τ (θ):w 

–	 trivial: larger behavioral response from a tax increase and higher probability to reduce tax income 
by increasing taxes 

•	 A high convexity of the tax schedule increases taxes: 

1−τ (θ)
–	 increases 

d log τ(θ) 

d log y 

–	 increases τ(θ): 
–	 “tax cuts are costly because big tax revenue losses per fallers” 

w• A strong increase of -the elasticity of earnings with respect to the after tax wage- in income d log(� ∗ (y)) 
d log y

increases τ(θ): 

–	 “tax cuts are costly because elastic red fallers will be attracted by lower tax rate, start to work 
less and hence reduce the tax base 

d log(h ∗ (y))• A fat tail/slow decline in the earnings density/low absolute value of the slope (i.e. > 0 isd log y

small) leads to higher taxes τ(θ): 

–	 “Tax cuts at the top are costly because many red fallers will start to work less and reduce the tax 
base” (fat tail: Piketty & Saez vs. lognormal tail: Mirrlees) 

•	 A strong income effect on leisure/labor supply (i.e. − ∂MRS 
> 0 is big) reduces taxes τ(θ):∂c 

–	 Strong income effects -> rich love leisure and thus need low taxes to incentivize them to work 
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