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Problem Set 2 
Labor Economics 

 
You may work in groups, but you must do the coding and write-up on your own.  Include your code 
with your writeup.  Do not submit STATA output in raw form. 
 
This problem set provides an introduction and summary to issues related to intergenerational mobility.  The 
related papers you may find helpful consulting are: 
 
Haider, Steven, and Gary Solon, “Life-Cycle Variation in the Association between Current and Lifetime 
Earnings,” mimeo, March 2004-10-09 
 
McCrary, Justin, and Healther Royer, ‘Does Maternal Education Affect Infant Health? A Regression 
Discontinuity Approach Based on School Entry Age Laws,” mimeo 
 
Oreopoulos, Philip, Marianne Page, and Ann Stevens, “Does Human Capital Transfer from Parent to Child? 
The Intergenerational Effects of Compulsory Schooling”, NBER WP#10164 
 
 
Part I 
 
The model of interest is: 
 

iii eyy += 01 β , 
 
where iy1  is average (age detrended) lifetime log earnings for sons, iti yy 11 = .  and iy0  is average (age 
detrended) lifetime log earnings for fathers, iti yy 00 = .  β  is the intergenerational mobility coefficient that 
provides an omnibus measure of how father’s labor market outcomes relate to son’s eventual labor market 
outcomes. 
 
 
1) Suppose that log earnings for fathers at age s is iis yy 00 = , and log earnings for sons at age t can be 
decomposed into three components: ititiit uwyy 1111 ++= , where itw1  reflects transitory deviations from 
trend, and itu1  is measurement error.  Both the transitory and measurement error component have mean 
zero, and 0),cov(),cov(),cov( 111111 === ititiitiit uwyuyw . 
 
You only have sons and father’s earnings data for one year.  Show that a linear regression of annual sons 
earnings at age t on annual fathers earnings at age s generates a consistent estimate for β . 
 
 
2) Now define the transitory and measurement error components of father’s log earnings at s as: 

isisiis uwyy 0000 ++= , and assume 0),cov(),cov(),cov( 000000 === isisiisiis uwyuyw .  Calculate the 
attenuation bias for your estimate of β  



 
 
3) Assume no serial correlation in log earnings across periods. What is the attenuation bias using an average 
of father’s log earnings over T years?  Assuming the share of the variance in annual earnings is accounted 
by permanent factors by .5, transitory factors by .3, and measurement error by .2, how much is the bias 
reduced averaging over 5 years compared to just using one year? What about over 10 years? 
 
Bonus: Assume serial correlation:  
 

isisis ww ξρ += −100 . 
 
What is the attenuation bias, and how much is the attenuation bias reduced by averaging over 5 years and 
10 years if 8.=ρ  (you need to recall rules of summation to do this).  Ignore the fact that persistence in 
annual shocks affects the average lifetime earnings if the shocks do not die off over the course of an 
individual’s working life. 
 
4) The model above assumes log earnings differs by level rather than growth.  Everyone has the same age 
profile, and so we can detrend by age without any concern.  For any given age, the variance in log earnings 
is the same.  Now consider the implications if sons differ in earnings growth.  This is a natural extension if 
we believe wage growth differs by initial skill or education level.  To contrast with above, suppose there are 
no transitory shocks and no measurement error.  Father’s earnings are iis yy 00 = , and that initial son’s log 
earnings are the same and increase linearly:. 
 

txy iit γ+= 101  
 
Then itit yy 11 λ= , where 1=tλ  only when 2/Tt = .  1<tλ  and iit yy 11 <  for younger ages and vice 
versa for older ages.  At 0=t , earnings are the same for everyone, and the intergenerational mobility 
coefficient is zero.  We can rewrite itiit vyy 111 += , where )1(11 −= tiit yv λ .  Notice we have non-classical 
measurement error. 
 
What is the bias from regressing ity1  on isy0 ?  Compare this with question 1. 
 
5) Finally, assume non-classical measurement error for fathers too: isis yy 00 λ= .  What is the bias from 
regressing ity1  on isy0 ?   
 
 
 
 
 
 
 
 
 
 
 
 
 



Part II 
 
Part II provides a brief example of a regression discontinuity design. 
 
The dataset bw_educ_data.dta contains cell mean data for all births in Texas and California between 1989 
and 2001 among mothers aged 23 years or less (see McCrary and Royer for details).  Data are aggregated 
by birth day of mother (365 cells). 
 
Variable definitions 
 
Rel_bdate: number of days born before or after the closest school entry day cut-off (December 1st in 
California, September 1st in Texas). 
Educ_cal: mean years of schooling for mothers from the California sample 
Educ_texas: mean years of schooling for mothers from the texas sample 
Bw_cal: fraction of children born low birth weight from the California sample 
Bw_texas: fraction of children born low birth weight from the texas sample  
 
Children age 6 a day before the school entry law are required to enter Grade 1, while children age 6 a day 
after the entry law do not enter Grade 1 until the following school year.  These latter children typically have 
one year less education before having the legal option to drop out of high school. 
 
We are interested in estimating the following model: iii eSy += β , where iy  is birthweight of child from 
mother i, and iS  is years of schooling for mother i.  Suppose relative birth date, ix , is small enough an 

interval that we can treat it as continuous.  A discontinuity exists at: *x .  Children with *xxi ≤  enter school 

one year earlier than children with *xxi > .  A child is legally allowed to leave school when they turn 16.  

Thus, assuming the existence of left and right limits at *x   
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Around birth dates arbitrarily close to *x , 
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The limit of this difference when 0→ε  is: 
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So the parameter of interest is identified by: 
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1) Estimate the ‘first stage’, −+ − SS , by assuming schooling is a polynomial function of date of birth and 
an indicator for *xxi > .  Assume the polynomial takes on the same functional form to the left and right of 
the discontinuity (you may also consider other functional forms or kernel estimators if you choose).  Graph 



the fitted first stage on scatter graph, with 95 percent confidence regions around the predicted fit, and a line 
at the discontinuity. 
 
2) Do the same for the reduced form. 
 
3) What is your IV-regression discontinuity estimate for the effect of schooling on child’s birth weight?  
Interpret this as a LATE. 
 
4)  Why is it useful that we have both Texas and California data? 
 
 
Part III 
 
The dataset repeat_educm.dta contains observations from the 1% samples of the 1960,70, and 80 U.S. 
Censuses.  The sample includes all children ages 7 to 15 born in the United States matched to mothers also 
born in the United States.      
 
Variable definitions 
 
State: current state of household residence 
Bpl2mom: birth state of mom 
Year14m: year mom was age 14 
Dropagem: minimum school leaving age at state mom was born in, when mom was age 14 
Age: age of child 
Censyear: census year 
Clmom: predicted number of years mom required to stay in school based on state of birth, and year mom 
was 14 
Agemom: age of mom 
Iwagemom: mom’s wage and salary income 
Higr2mom: mom’s highest grade completed 
Ftotinc: mom’s total family income 
Famsize: number of own family members in household 
Blac: black indicator for child 
Female: female indicator for child 
Repeat: indicator whether child behind at least once grade (based on school entry age at current state of 
residence and age of child) 
Higrres50: indicator for whether child’s grade below median for age/state group 
Regionm: region of mom’s state of birth (defined on IPUMS web site) 
 
We’re interested in examining the intergenerational effect of mother’s compulsory schooling on the 
probability that a child repeats a grade. 
 
1) Estimate the first stage, both with the individual sample and with aggregated cell means (if STATA runs 
out of RAM, find another computer to work on): 
 

ylmmlyylmmlmlmlylm vvvvXCLCLCLMothEd ++++++++= +++ 414,314,214,10 987 ηηηηη  
 
where ylmMothEd  represents mother’s education level for the group of youths observed in census year y, 
with mothers from state l  born in year m , and X  is a vector of variables that capture the child group’s 
average  race, gender and age.  CL7, CL8, and CL9 which are dummy variables that denote required years 



of schooling prior to obtaining a work permit of 7, 8, or 9 or more years.  You may use an alternative 
compulsory schooling measure using the dropagem variable or assuming a linear single variable for 
CLmom or dropagem.    
 
How are the concerns about the validity of the instrument similar to concerns that arise from a difference-
in-differences analysis?  What are the advantages with working with aggregated cell means? 
 
2) Produce a table that shows the first stage and reduced form for the full sample and the sample of mothers 
with more than 12 years of school.  Why does the second sample provide a sensitivity check to the analysis? 
 
3) Produce a table that shows the OLS and IV results for the dependent variables repeat, log mother’s 
income, and log family income, with and without regional trends.  (If you’re working with cell means, you 
will have to aggregate up to include mother variation by higr2mom in order to run the OLS). 
 
4) We can examine whether a discontinuous break in average schooling and the probability of repeating a 
grade occurs the year after a compulsory school law restriction.  The dataset leadlag.dta contains indicator 
variables for whether an increase in the CL variable occurred or is about to occur.  The variable m10, m9, 
m8, …, are indicator variables that a the CL variable will increase 10 years from the year a mother was 14, 
9 years, 8 years, etc…  The variables p1, p2, p3, … are indicator variables that the CL variable increased 
the year a mother was age 14, 1 year earlier, 2 years earlier, etc…  The data include years and states only 
for 20 year ranges where one change occurred.  Thus, if there was no law change in a 20 year period, the 
lead lag indicators were dropped. 
 
Merge the leadlag data to your collapsed dataset.  Plot or make a table of the lead lags using mother’s 
schooling and the repeat variables as the dependent variables, including, at least, fixed effects for birth 
cohort and mother’s state of birth.  Try this just for the sample of mothers with at least 12 years of school.  
Why is this a good check on the validity of the instrument?  Do you find these results convincing? 
 
5) summarize your findings in Part I and Part II in one paragraph. 
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