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1 Probit Maximum Likelihood

1.1 MLE background
Maximum likelihood estimation is a technique used to estimate the parameters of a model when we have a
parametric model for the data generating process. Formally, we have data on realizations of some random
variable or vector x;, i = 1...N, and we know that the probability density or mass function associated with
T is

f(a:0)
for some parameter vector . The idea of maximum likelihood estimation is to pick the parameter vector

6 that maximizes the probability of observing the sample that we actually observed. The likelihood of
observing the z; that we saw for one observation if the parameter vector is 6 is

Li= f(x;;0)

and (with independent and identically distributed data) the likelihood for the whole sample is just the
product of likelihoods across all observations:

L= Hﬁi = Hf(xl,ﬁ)
The maximum likelihood estimator (MLE) is just the parameter vector that maximizes this likelihood:
Onr = arg mgXIZ[ f(xi;0)

We often find it convenient to work with the log of the likelihood function. Maximizing a function is equivalent
to maximizing its log since log is a strictly increasing function, and taking logs converts the product over
individual likelihoods into a sum. We can therefore write

Onr = argméaxzi:logf (z:;0)

As long as we’ve specified the distribution of the data correctly, under weak additional conditions the ML
estimator will be:

1. Consistent



2. Efficient
3. Asymptotically normal
You’ll work through the details of MLE in your econometrics classes. For now, it is enough to understand

the intuition for the procedure, to know these properties, and to know how to apply it in some particular
cases.

1.2 Example: Probit

“Probit” is a particular example of maximum likelihood. It is used for situations involving a binary choice
between two alternatives, which we can call alternative 1 and alternative 0. The model is:

yr = X/B— €, €| X; ~ N (0,0%)

Here, y? is a latent (unobserved) preference for alternative 1 relative to alternative 0; if y; is positive, the
agent likes alternative 1 best. X is a vector of observed characteristics. We want to estimate S to determine
how the X’s affect the agent’s choice. Instead of observing y!, we observe

yi = 1{y; >0}

That is, we see each person’s choice between the two possible alternatives, along with the vector X;.

Note that we have assumed a parametric form for ¢; — the normal distribution. This is what makes the model
a probit. We could make other assumptions; if ¢; follows a type I extreme value distribution the model is
called “logit.” Note also that we have made an assumption about the error distribution conditional on Xj;
we will actually be doing conditional MLE, as we aren’t specifying the distribution of X.

Conditioning on X;, we can use our distributional assumption to work out the probability of each choice as
a function of the parameter vector 8. This is

Prly; =1|X;] = Prly; > 0|X]

= Pr[X[B > ¢|X;]

:@(Lﬁﬁ)

where ® is the standard normal cdf. This works because ¢/ follows a standard normal distribution conditional
on X;. Similarly, the probability of an outcome of zero is

g

The likelihood for an individual observation, which is the probability of observing the value of y; that we
actually observed for a given set of parameters, is then

e - {* 05,




The likelihood for the whole sample is just the product of the individual likelihoods:

cB0) = TT2(22) I [1-e (22)]

yi=1 y;=0

which we can also write as

o= Tl ()" [0 ()]~

Note that 8 and o are not separately identified; they always appear in a ratio. We can therefore normalize
o = 1 and interpret (§ relative to the standard deviation of ¢;. Taking logs, we can define the maximum
likelihood estimator of 3 as

B = arg mﬁaxz (yi - 1og ® (X!B) + (1 — y) - log [1 — @ (X!B)])

The FOCs of this program with respect to the elements of 3 are

> yi-(b(){;é)_Xi_<1—yi)-¢({(;é)_Xi L,
~\ ewxp) - 2(X;3)

3

which can be re-written as

s (n-o(x)

T oxip) (1- o (x18)) o

This equation can be solved numerically for B

One more note on probit: The £’s that we get from maximum likelihood estimation are NOT the effects of
the X’s on the probability of choosing one alternative rather than the other. Instead, the marginal effect of
a given element of X on the probability of choosing alternative 1 is

OPrly; =11X;] ,

Unlike the marginal effects we usually get from regression, this derivative is not constant as a function of
X;. We can therefore look at a number of different marginal effects. Two quantities that are of particular
interest are

Average marginal effect: E [%ﬁllx]] =FE[¢(X[P) - Bkl

0Xix

=6 (X'8) -

Marginal effect at the average:

These need not be the same, though usually they will be close. Give estimates of 3, it is straightforward to
estimate either one.



2 Properties of the expenditure function

In consumer theory, the expenditure function is defined by
e(p1, - PN, ) = mxinzpm
K3

s.t.
u (1, ..., TN) > U
That is, the expenditure function is the “minimized minimand” or the expenditure minimization problem:;

for given prices, it tells us the minimum amount of income needed to achieve a given utility level. The
minimizers of this problem are compensated demands, z$(p, @).

Today we will prove a couple of useful properties of the expenditure function.
2.1 Property 1: Shephard’s Lemma

Shephard’s Lemma says that

de(p,u) .. _
Bpj J

In words, the derivative of the expenditure function with respect to the price of good j is equal to the
hicksian (compensated) demand for good j.

To show Shephard’s Lemma, we can use the following theorem:

Envelope Theorem for Constrained Optimization: Consider the problem
V(a) = minf(x: )
s.t.
g(z;0) 2 0
Let 2*(«) be the minimizer. Then

OV(a) _ 0f (a*(a);a) _, 9g(a"(a);a)

Oa Ooa Oa

where ) is the Lagrange multiplier for the problem.

Let’s prove this theorem. The Lagrangian is
L= f(z;0) = Ag(z;0)

So the FOCs are

af | 0g
%_Aax



g(z;0) =0

We want to get the derivative of the objective function. We have

SO

ov _of i o
da Oz da O«

Differentiating the second FOC, we know

o9 dr 0y _

oxr da Jda 0
dz* _ 99/0a
do o 89/8$

Plugging this and the first FOC into the expression of interest yields

o )\39 99/oa  Of

Do~ T 0x 99/or  Oa

or

ov_9of 9
da O oo

which is what we wanted to prove. I’ve done this for the scalar case but it works just as well for vectors.

We can then apply this to the expenditure function example: Here,

flzia) = Zpiwi

The o we are interested in is p;, the price of good j. This does not appear in g, so we can just take the
partial derivative of f to obtain

Oe e
j

op;

This is Shephard’s lemma. The intuition is pretty straightforward. If the price of good j increases by 1
dollar, the first effect is to make the bundle the consumer is already consuming more expensive by zf. The
consumer can also re-optimize after the price change, but since she is already at a maximum, small changes
in her consumption bundle have no first-order effect on the value of the objective function.



2.2 Property 2: Concavity in prices
The second property we want to show is that the expenditure function is concave in prices. Let’s work with

vectors and dot products instead of sums for ease of notation. Concavity of the expenditure function means
that for any two price vectors p; and po, and any « € (0, 1),

e(apr + (1 — a)p2,u) > ae(pr,u) + (1 — a)e(p2, u)
We’ll prove it by contradiction. Suppose this isn’t true. Then for some p1, p2 and «,

e(apr + (1 — a)ps,u) < ae(pr,u) + (1 — a)e(pa, u)
By definition of the expenditure function, this says

[apr + (1 — a)ps] - ¢ (ap1 + (1 — a)pa, u) < az(p1,u) + (1 — a)x(p2,u)
Just re-arranging terms, this says
a- (praf (apy + (1 — a)pa,u) — pra(pr, u) + (1 — @) - (22 (ap1 + (1 — a)p2, u) — p2a©(pa,u)) <0

For this whole quantity to be less than zero, at least one of the two terms must be negative. But neither
can be; each yields utility u, and by definition of the expenditure function the quantity p;z°(p;, u) must be

smaller than the cost of any other bundle that yields utility u at prices p;. So we have a contradiction, and
the expenditure function must be concave.

This makes intuitive sense. Using our Shephard’s lemma result, note that the second derivative of the ex-
penditure function is the first derivative of Hicksian demand. Concavity means that the own-price derivative
of compensated demand is negative; if price goes up, compensated demand must go down. To put it another
way, when price increases, the substitution effect leads to a decrease in consumption.

3 Regression review

3.1 Bivariate OLS

Suppose we want to estimate the parameters of the bivariate model
yi = o+ Bz +¢

The OLS estimator is given by

3 %Z(yz — )i =) Couv(;, )
OLS = = —

%Z(ml —z)? Var (z;)

The law of large numbers tells us that sample moments converge to population moments as long as the
population moments exist, so

Cov (x;,y;)

plimBors = Var (z1)

This is always true for a bivariate regression; you should remember this formula.



3.2 Partialling Out: The Frisch-Waugh Theorem
Most of the regressions you will run in your life will include multiple explanatory variables, but the bivariate
regression formula is still relevant for such situations due to the following result.

Suppose we want to run the regression
yi=a+ P + 2y +e

Let’s define this as a regression in the population, so that Cov(x;,€;) = Cov (2ik, €;) = 0. We can obtain our
estimate of 8 in two steps:

1. First, run the regression z; = 6y + 2,01 + 7;. Compute the residuals from this regression: #; =
T; — 90 — 2291

2. Run the regression y; = o + BZ; + ;.

The estimate of 8 from step 2 will be algebraically identical to what we would have gotten by running the
full multivariate regression. This is the Frisch-Waugh Theorem. Why does this work? Let’s pretend we have
data on the whole population so we can just work with population quantities (the same thing holds exactly
in finite samples). The 2-step regression gives us

Bpyw = Cov (%4, yi)
W " Var (Z;)

_ Cov (¥, a4 By + zjy + €;)
B Var (z;)

Cov (Zs,x;)  Cov(Z,2y)  Cov (T4, €)
Var (Z;) Var(z;) Var(z;)

As a residual from a regression on z;, Z; is uncorrelated with linear functions of z; by construction. In
addition, since Z; is just a linear function of x; and z;, it must be uncorrelated with the population residual
€; by construction. This leaves us with

Cov ({fi, (fi + :i‘z)

=5 Var (%;)

~ 8

since z; and x; are uncorrelated by construction.

Thanks to the Frisch-Waugh Theorem, we can therefore just use the bivariate regression formula assuming
that we’ve “partialled out” any other explanatory variables we want to include in this way. Note that we
could partial out the additional explanatory variables from y also, or not — it doesn’t matter. This occurs
because

and
Cov(ys, ;) = Cov(§; + Ui, T;) = Cov(Ji, T4)

since ¢ is a projection onto the space spanned by z; and (as a residual from a regression on z;) Z; is therefore
uncorrelated with g; by construction.



3.3 OLS Problems

There are a number of situations in which OLS will fail to estimate the parameters of interest. In such cases,
we have to appeal to alternative econometric techniques. Three such cases are covered below.

3.3.1 Omitted Variable Bias
Suppose the regression we want to run is
Yi = a+ Bxi +yzi + i

with Cov(x;,m;) = Cov(z;,n;) = 0. However, we can’t observe z;, so we omit it from our regression and
instead run:

yi=a+fr;+¢
In this case, the probability limit of our OLS estimator is

Cov(z;,y;)

plimfors = <

~ Cov(ws, a0+ By + vz +15)
N Var(z;)

Cov(x;, 2;)

= plimfBors =B+ - Var(zy)

You should remember this formula. Note that the bivariate OLS estimator is consistent if z; has a coefficient
of zero in the full regression, or if x; and z; aren’t correlated.

3.3.2 Measurement Error
Suppose we want to run the regression
y; = a+ fBr] +e
with Cov (27, ¢;) = 0. We observe y, but instead of observing =] we instead observe
T, =T + v
with Cov(v;, zf) = Cov(v;, €;) = 0. What happens if we regress y; on x;? Note that we can write
yr = a+ Bx; + (6 — fv;)

Since v; shows up in both the error term and in our regressor, we are in trouble. The result of running this
regression is

Cov (x4, yF)

limB —
plimBors Var (1)



_ Cov (2] + v, a+ B} +¢)
N Var(z;)

Var (z})

=8 Var (z;)

Under the conditions assumed above this is

Var (z})
Var (zf) + Var(v)

= plimBors = f

The quantity

B Var ()
- Var (z}) + Var(v;)

is called the “reliability ratio;” A is the proportion of the variance in the observed x; due to the variance of
the true variable of interest (“signal” rather than “noise”). Since A € (0, 1), we have

plimBors| < |B]

That is, random measurement error causes our parameter estimate to be too close to zero. This is called
“attenuation bias.” Note that if you are only interested in testing the null hypothesis that g = 0, then if you
can reject, this hypothesis the possibility of measurement error strengthens your conclusion.

3.3.3 Simultaneity Bias

A regression can also fail to recover parameters of interest when the right and left-hand side variables are
jointly determined. This is best explained by way of an example. Suppose we have the supply and demand
equations (respectively)

g = a+ Bp; + €
Di=w+7q +n

with Cov(e;,n;) = 0. What happens if we regress quantity on price in an attempt to recover the parameters
of supply? Note that we can write

pi =w+y(a+Bp;i+e&)+mn

wtye | e+
— P =
PTTET TB

Again, since the error from the supply equation appears in p; due to feedback through the demand equation,
a regression is not going to give us the parameters of interest. Running this regression gives

Cov (ps, qi)

plimBors = Var (o)



~ Cov(pi,a+ Bpi +€)
a Var (p;)

Cov (pi, €;)

=t V)

(1 —~B)Var (€)

v2Var (¢;) + Var (n;) <#

=0+

since 8 > 0, v < 0.

A lot of what we do in future recitations will be to review methods that solve these problems.

4 Panel Data Methods

In many data sets, we get to see repeated observations on the same units (people, firms, countries, etc.) over
time. This is called “panel data.” Formally, our data include ¢+ = 1...N units and ¢ = 1...T time periods.
Suppose we want to estimate a model like the following:

Yit = o + BT + €5

In such models we often decompose the error term ¢;; into a permanent individual-specific component 6; and
an idiosyncratic error term 7);;:

Yir = &+ By + 0; + nit
with
Cov(a;,mit) =0
Cov (Mit,nks) =0 Vi# j, t # s
In addition let’s suppose that
Cov(ni,xit) =0

In this case the only bias we are worried about comes from 6;; for now, we are assuming that the only
potential omitted variables are things that are fixed over timeThere are two standard ways to proceed from
here.

4.1 Random Effects

Suppose we are comfortable making the assumption that
Cov (24,0;) =0
In this case, we have

Cov (xi,0; +mit) =0

10



so there is no correlation between our right-hand side variable and the composite error term. Then we know
that OLS will be consistent! However, given the nature of our data, we can actually do even better than
OLS. Note that

Cov (0; + nit, 0; + nis) = Var (0;),

so we have autocorrelation in the unobserved part of the model. Furthermore, we know the structure of this
correlation — there is a common covariance between the error terms for observations on the same individual,
and no other autocorrelation. In situations with a known non-spherical error structure, the most efficient
estimator is Generalized Least Squares (GLS). For this panel model, GLS is called “Random Effects.” You’ll
learn how to do GLS in econometrics.

4.2 Fixed Effects

In most cases, we won’t be comfortable making the assumption that Cov (x;,6;) = 0. Instead, we view 6;
as a potential source of omitted variable bias. Fortunately, we can deal with this by simply controlling for
0;! We can do this by directly including a vector of person-dummies in our regression:

N
Yir = BTy + Z 0;Dy; + nit

j=1

Here D;; is a dummy variable that is one if i = j and zero else; each person gets their own dummy variable
(note that I've now excluded the constant). We can just run this with OLS, knowing that including the
person-dummies has eliminated any bias due to permanent unobserved characteristics. This procedure is
called Fixed Effects (FE).

It is worth thinking more about how to interpret Fixed Effects estimates. Recall from the Frisch-Waugh
theorem that we can obtain our estimates by first partialling out the person-dummies and then regressing
y on the resulting residuals. For once, it will be easier to use matrices. Let’s order the data with our T’
observations on person 1 first, followed by our 7' observations on person 2, etc. Let Xxnrx1 be the vector
containing the z;;. Then the coefficient vector from regressing X on the person-dummies is

(D'D)"'D'X
and the residuals are given by

X=X-DDD)'DX

where
17 Op Or
Dnrxn = O_T Iz '
Or 07; 1r

is our matrix of person dummies. Here 17 is a column-vector of 7' 1’s. Writing this out yields

-1

1 0n - 0k 1 O0p -+ Op
Y-x_D 0 14 : | 0r 1p Dx
07 0 14 Or 0r 1r
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=X-D 0 T D'X
0 0o T
1
L0 0
0 1
=X-D T D'X
0O --- 0 %
lr Op -~ Or Lo 0
1
x| 0 0 D'X
Op -+ Op I1p 0 0o 4
T 0r Or . 0 0’
P U : 0 14 x
Or or 2= | |0; (A
lrxT
0 0 X1T><1
_x_ 0 IT%T X2.T><1
0 0 1TT><T XNTXI
=X-X

where X is a matrix where each individual observation has been replaced with the mean for the relevant
person. Then fixed effects is equivalent to estimating the regression

Vit — Ui = B (Tir — T;) + wir

That is, fixed effects estimates the model using deviations from person-means. This is called the “within”
model because it uses only variation within persons and does not use the variation in mean z’s and mean
y’s across people. Other things to know about fixed effects:

. Fixed effects cannot be used to estimate the coefficients on time-invariant variables — there is no
variation left in such variables once we take out the individual-specific means

With only 2 time periods, fixed effects is equivalent to first differences (with no constant; fixed effects
with a time dummy is equivalent to first differences with a constant)

Fixed effects and differencing can make measurement error a lot worse. We will see this in a future
recitation.
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