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1 Differences-in-differences

1.1 Basic Structure

Differences-in-differences (or “DD” for short) is a technique for estimating the effect of some treatment on
some outcome. In Eissa and Liebman (1996), the treatment is the expansion of the EITC, and the outcome is
employment. The basic DD research design has 2 groups (treatment and control) and two time periods (pre
and post). The treatment group receives the treatment in the post period. Let’s introduce some notation.
If Y; is our outcome, then let

Yy =i’s outcome if he or she does not receive the treatment
Yi; = 7’s outcome if he or she receives the treatment
As researchers, what we ultimately want is a plausible estimate of
0 = E [Yy;|treatment group, post] — E [Yy;|treatment group, post]

That is, we want to know is how the treatment affected the treatment group in the post period. How much
higher was labor force participation for single women with kids than it would’ve been without the expansion
of the EITC?

The first term is easy to estimate — it is just the average Y for the treatment group in the post period.
The problem is that it’s not clear how to estimate E [Yy;|treatment group, post]. We cannot observe what
LFP would’ve been for single women with kids without the expansion, because the expansion happened. We
therefore have to estimate it somehow. If we were running a randomized trial, we could simply estimate it
from the control group, but we often can’t do this. In DD estimation, we select a non-randomized control
group. In Eissa and Liebman (1996), the control group is single women without kids. This group does not
receive the treatment.

Given such a control group, we might think to estimate ¢ as follows:
5i=F [Y;|treatment group, post] — E [Y;|control group, post]

Here our estimate of E [Yy;|treatment group, post] is the control mean in the post period. The trouble with
this is that if there are any differences between our treatment and control groups, this estimator will attribute
them to the treatment. This estimator would work in a randomized trial, but if we have selected our control
group in a nonexperimental setting then we might be worried.

Another estimator we might try is to simply throw out the control group and look at the change over time
for the treated:



by = E[Yi|treatment group, post] — E [Y;|treatment group, pre]

Now, our estimate of E [Yp,|treatment group, post] is the mean for the treatment group in the pre-period.
The trouble with this is that if there is anything else causing Y to change over time, this estimator will
incorrectly attribute the change to the treatment.

The DD estimator tries to solve the problems with these naive estimators by comparing CHANGES over
time in the treatment and control groups. Formally, the DD estimator of § is

Spp = (E’ [Y;|treatment group, post] — E [Y;|treatment group,pre]) —

(E [Y;|control group, post] — E [Y;|control group, pre])

You can think about this as correcting our second estimator above by removing other things that cause Y
to change over time, where the effect of these things is estimated from the change in the control group. This
interpretation makes the identification assumption clear: In the absence of the treatment, the treatment and
control groups would move in parallel over time, so changes in the control group capture any time effects
that would’ve affected the treatment group. This assumption is called NO DIFFERENTIAL TRENDS. DD
attributes any difference in the changes over time to the treatment, so there can’t be anything else causing
such differences if the estimator is to be unbiased.

Note that by simply rearranging terms, we can rewrite the DD estimator as

épp = (E’ [V |treatment group, post] — E [Y;|control groupmost]) -
(E [Y; |[treatment group, pre] — E [Y;|control group,pre})
This can be interpreted as correcting our first estimator from above by removing the noncomparability
between treatment and control, where this noncomparability is estimated from the pre period. This makes

it clear that for the DD strategy to work, any confounding differences between treatment and control must
be constant over time. This is another way of stating the no differential trends assumption.

1.2 DD as Regression
It is clear from above that it is easy to compute a DD — we just need to compute 4 means. But getting a

standard error could be a little complicated if there are covariances between these estimates. It is therefore
often easier to compute the DD estimator from a regression. Consider the regression:

Yt = a+ BTreat; + yPost; + 6Treat; - Post; + €;1

How is this the same as the DD? Consider the coefficients associated with each possible combination of T'reat
and Post:

| [ Erl ]
Treatment group, post | a+ 38+ v+46
Control group, post a4y
Treatment group, pre a+ B
Control group, pre o

Then the DD estimator is

0pp = ((@+B+7+48) —(a+7) — ((a+ ) —a)



—B+5-8
=4

so ¢ from this regression gives us the DD estimate. Note furthermore that in this regression setup, we could
add controls for any variables that we think might be causing differential trends between treatment and
control. The identifying assumption then becomes that there are no differential trends besides the ones
we’ve controlled for.

1.3 Other DD Issues: Pre-periods, DDD, and inference

As we'’ve said repeatedly, the identifying assumption required for DD to work is that in the absence of the
treatment, the treated and control groups would move in parallel. In many cases this is not obvious. In
the Eissa and Liebman paper, should we expect the labor force participation of women with and without
children to move in parallel?

Fortunately, in cases where we have multiple periods, we can perform a check of the identifying assumption:
We can see whether the treatment and control groups moved in parallel in periods before the treatment
happened. This is like running a DD in time periods without a treatment. If you get a non-zero estimate,
the trends are not parallel in the pre-period and this should make you worried about your main DD estimate.
In general, you should graph the pre-trend whenever possible. In fact, the most convincing DD evidence is
often graphical — if an author doing DD doesn’t graph the data, be skeptical!

In the previous paragraph I argued that differential trends in the pre-period should make you skeptical about
a DD estimate. Another way to respond to this finding is to try to correct for these differential trends by
removing them from your DD estimate. That is, you run a DD in the pre-period, and subtract this from
your DD estimate. This is called “differences in differences in differences” (DDD). If there 2 periods prior to
the treatment, the DDD estimator would be

Sppp = [(E [Y; |treatment group, post] — E [Y;|control group,post]) — (E [Y; [treatment group, pre2] — E [Y;|control group, pre2])} —

{(EAJ [Yi|treatment group, pre2] — E [Y;|control group7pre2]) - (E [Yi|treatment group, prel] — E [Y;|control group, prel])]

You can also do DDD if you have additional groups that you think might capture differential trends between
treatment and control. For example, in Eissa and Liebman, one might compare changes among highly
educated women with and without kids, and take the difference in trends for this group out of the DD
estimator for low educated women. Some people don’t find DDD very convincing — if there are different
levels and trends, maybe we should just conclude that the controls are a really bad comparison group!

In addition, in many DD analyses there are big issues with getting the right standard errors. A famous
paper about this is Bertrand, Duflo and Mullainathan (2004). They show that OLS standard errors are
badly biased downward in DD analyses that use US states as comparison groups, and that one must cluster
at the state level to get reasonable standard errors. More generally, in many DDs it is appropriate to cluster
your standard errors at the group level, in which case you effectively have many fewer observations than you
thought. You will learn more about clustering in econometrics, and possibly in a future recitation in this
class.

Finally, one under-discussed point is that DD analyses depend heavily on functional form assumptions. For
example, no differential trends in logs IMPLIES differential trends in levels! One should be skeptical of DDs
that are highly sensitive to specification of the dependent variable.

2 Panel Data Methods

In many data sets, we get to see repeated observations on the same units (people, firms, countries, etc.) over
time. This is called “panel data.” Formally, our data include ¢ = 1...N units and ¢ = 1...T time periods.
Suppose we want to estimate a model like the following:



Yit = @ + BT + €5

In such models we often decompose the error term €;; into a permanent individual-specific component 6; and
an idiosyncratic error term 7;;:

Yie = &+ By + 0; + nit
with
Cov(ai,nit) =0
Cov (nit,njs) =0Vi# j, t # s
In addition let’s suppose that
Cov(ni,xie) =0

In this case the only bias we are worried about comes from 6;; for now, we are assuming that the only
potential omitted variables are things that are fixed over time. There are two standard ways to proceed from
here.

2.1 Random Effects
Suppose we are comfortable making the assumption that
Cov (x,6;) =0
In this case, we have
Cov (z4,0; +mi¢) =0

so there is no correlation between our right-hand side variable and the composite error term. Then we know
that OLS will be consistent! However, given the nature of our data, we can actually do even better than
OLS. Note that

Cov (0; + nit, 0 + nis) = Var (0;),

so we have autocorrelation in the unobserved part of the model. Furthermore, we know the structure of this
correlation — there is a common covariance between the error terms for observations on the same individual,
and no other autocorrelation. In situations with a known non-spherical error structure, the most efficient
estimator is Generalized Least Squares (GLS). For this panel model, GLS is called “Random Effects.” You’ll
learn how to do GLS in econometrics.



2.2 Fixed Effects

In most cases, we won’t be comfortable making the assumption that Cov (x;,6;) = 0. Instead, we view 6;
as a potential source of omitted variable bias. Fortunately, we can deal with this by simply controlling for
0;! We can do this by directly including a vector of person-dummies in our regression:

N
Yit = By + Z9jDz‘j + Nit

Jj=1

Here D;; is a dummy variable that is one if i = j and zero else; each person gets their own dummy variable
(note that I’'ve now excluded the constant). We can just run this with OLS, knowing that including the
person-dummies has eliminated any bias due to permanent unobserved characteristics. This procedure is
called Fixed Effects (FE).

It is worth thinking more about how to interpret Fixed Effects estimates. Recall from the Frisch-Waugh
theorem that we can obtain our estimates by first partialling out the person-dummies and then regressing
y on the resulting residuals. For once, it will be easier to use matrices. Let’s order the data with our T’
observations on person 1 first, followed by our T' observations on person 2, etc. Let X 7«1 be the vector
containing the x;;. Then the coefficient vector from regressing X on the person-dummies is

(D'D)~'D'X
and the residuals are given by

X=X-DDD)'DX

where
1r Op Op
Dnrxn = O_T Lz
O.T ()T' 1.T

is our matrix of person dummies. Here 17 is a column-vector of T' 1’s. Writing this out yields
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1
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where X is a matrix where each individual observation has been replaced with the mean for the relevant
person. Then fixed effects is equivalent to estimating the regression

Vit — Ui = B (Tir — T;) + wir

That is, fixed effects estimates the model using deviations from person-means. This is called the “within”
model because it uses only variation within persons and does not use the variation in mean z’s and mean
y’s across people. Other things to know about fixed effects:

1. Fixed effects cannot be used to estimate the coefficients on time-invariant variables — there is no
variation left in such variables once we take out the individual-specific means

2. With only 2 time periods, fixed effects is equivalent to first differences (with no constant; fixed effects
with a time dummy is equivalent to first differences with a constant)

3. Fixed effects and differencing can make measurement error a lot worse. We will see this in a future
recitation.
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