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1 OLS Problems

Recall that if we estimate the bivariate regression
Yi = a+ Bx; + €,
we get

Cov (x4, y;)

plimBors = Var (z1)

There are some important cases where OLS fails to estimate a parameter of interest.

1.1 Omitted Variable Bias
Suppose the regression we want to run is
Yi = a+ Bxi +yzi + i

with Cov(z;,n;) = Cov(z;,m;) = 0. However, we can’t observe z;, so we omit it from our regression and
instead run:

yi=a+Pr; + &
In this case, the probability limit of our OLS estimator is

. A _ Cov(wi, yi)
plimBors = Var(z:)
_ Cov(ws, a0+ By + vz + ;)
N Var(x;)

Cov(z;, z;)

= plimfBors =B+ - Var(zy)

You should remember this formula. Note that the bivariate OLS estimator is consistent if z; has a coefficient
of zero in the full regression, or if x; and z; aren’t correlated.



1.2 Measurement Error
Suppose we want to run the regression
y; = o+ faf + 6
with Cov (27, €;) = 0. We observe y, but instead of observing =] we instead observe
;=T + v
with Cov(v;, x}) = Cov(v;, €;) = 0. What happens if we regress y on x;? Note that we can write
y; = a+ Bz + (€ — Pv;)

Since v; shows up in both the error term and in our regressor, we are in trouble. The result of running this
regression is

. A _ Cov (Iia y;k)
plimBors = Var (1)
_ Cov (z] + v, a + Bx] + €)
N Var(x;)

Var (zF)

~ Var (@)

Under the conditions assumed above this is

. Var (zF)
Var () + Var(v)

= plimPors = B

The quantity

Var (zF)

A=
Var (zf) + Var(v)

is called the “reliability ratio;” X is the proportion of the variance in the observed x; due to the variance of
the true variable of interest (“signal” rather than “noise”). Since A € (0,1), we have

[plimBors| < 5|

That is, random measurement error causes our parameter estimate to be too close to zero. This is called
“attenuation bias.” Note that if you are only interested in testing the null hypothesis that 8 = 0, then if you
can reject this hypothesis the possibility of measurement error strengthens your conclusion.



2 Instrumental Variables (IV)

2.1 Basic IV

Let’s go back to the bivariate equation

yi =a+ fri+ ¢
Suppose we are worried that x; is correlated with ¢;, either because of OVB or measurement error. The
general solution is Instrumental Variables (IV). To do IV, we need to find a variable z;, called an instrument,

with the following properties:

1. Cov(z;,€;) = 0; this is “exogeneity” or the “exclusion restriction”. This restriction is inherently
untestable.

2. Cov(z;,x;) # 0; this is called “first stage” or “relevance”. Note that this is testable.

Suppose we have a z; that we would like to use. The IV estimator is

SO

o Cov(y;, 2;)

l = 222V &)
plimBry Cov(z;, z;)
If z; satisfies assumptions (1) and (2), then

Cov(a + Bx; + €, 2;)
Cov(z;, 2;)

plimfry =

. Cov(x;,2z;)  Cov (e, 2i)
Cov(x;,2z;)  Cov(ay, z;)

=B

=p
Note that

Cov(y;, 2i) _ Cov(ys, zi)/Var(z)
Cov(zi,z;)  Cov(zi,zi)/Var(z)

From this equation we can see that the IV estimator is really the ratio of two regression coefficients. Consider
the two equations

Yi = Yo + V12 + Uy
xX; :7T0+7T12’i+’w1'

Then



Bry =1

S
The first equation is called the “reduced form;” this is the regression of y; on the instrument z;. The second
equation is called the “first stage;” it is the regression of x; on z;. The instrumental variables estimator is
the ratio of the reduced form and first stage coefficients. This is intuitive. If we find that v; # 0, under
the assumptions above this can only be because of x; since z; is correlated with z but uncorrelated with
anything else that determines y, the correlation between y and z must be due to a relationship between z
and z. IV attributes the relationship between y and z to x, adjusting the relationship between x and z to
determine the effect of a 1-unit change in x.

2.2 The Wald Estimator

The Wald estimator is a famous special case of the single-instrument setup above were z; is a dummy variable:
z; € {0,1}. In this case, it is straightforward to show that the IV estimand becomes

Cov(y;, 2;) _ E[y;|z; = 1] — E [yi|zi = 0]
Cov(zi,z;)  FElxi|zi =1] — E[x;]z; = 0]

The Wald estimator is the sample analogue of this quantity. Note that if z; is also a dummy variable, the
denominator simply becomes the increase in the probability of “treatment” caused by z; switching from 0 to
1.

2.3 Multiple Instruments: 2SLS

Suppose we have many variables z;, 2s...zx that we think satisfy conditions (1) and (2) above. How do
we choose which one to use? We could compute B}“V separately for each instrument. But we would like to
somehow combine the instruments to produce our “best” estimate of 8. Two-stage least squares (2SLS) is a
way of doing this. To do 2SLS, we perform the following procedure:

1. Run z; = my + Zmzik + u;. As before, this regression of z; on the instruments is called the “first

k
stage.” From the first stage estimates, produce the fitted values z;.

2. Run the “second stage” regression y; = a + BZ; + €; IBQSLS is the estimate of 5 from this equation.
The second stage regression is just bivariate OLS, so we know that

N Cov (y;, &;)

lim =—"
plimBasrs Var (&1
For intuition, note that the second stage is a regression of y; on the part of z; that is explained by the
instruments. We can think of this as the “good” part of x;; it is the part that is uncontaminated by
correlation with ;.

Furthermore, note that since Cov (x;,3;) = Cov (&; + &;, &;) = Var (&;), we can write this as

5 Cov (y;, &i)

lim =—=
plimfBasrs Cou (21.30)
2SLS is therefore univariate IV, where the instrument is the fitted values from the first stage. We would like
to do IV using some function of our many instruments; 2SLS selects the linear projection of x onto the z’s.
In 382, you will see that this is the efficient linear combination of instruments under homoskedasticity.

One last note on 2SLS: Don’t do it manually! You will get the wrong standard errors. Instead, you should
just let Stata do both stages together.



2.4 Multiple Endogenous Variables
Now suppose our equation of interest is
yi = a+ 1z + Porai + €

and we are worried that both z; and x4 are endogenous (correlated with ¢;). As long as we have at least two
instruments, this is no problem; we can do 2SLS just like before. We run a first stage for each endogenous
variable:

T1; = M0 + E T1kZik + W14
k

T1; = Mo + E Mok Zik + U2i,
k

get fitted values #; and 25, and run the second-stage equation
Yi = a+ 121 + Palai + €
2.5 IV and Grouped Regression
Finally, an interesting special case of IV. Suppose that we want to estimate
yi=a+Pr &

and we have instruments z;...zx, which are mutually exclusive and exhaustive dummy variables. This is the
situation in Angrist (1991), where the z’s are year dummies. Suppose that nj observations have z;;, = 1.

We want to use these instruments to run 2SLS. The first stage is
T = Zwkzik + u;
k

What are the fitted values from this regression? As we saw in the case of Fixed Effects, the fitted values
from a regression on an exclusive and exhaustive set of group dummies are just the group means. That is,

T = Tk,

where k is the group that ¢ is in. So in our data, the fitted values look like this:

>
I




We have ny copies of Z, followed by ny copies of Zs, etc.

Next, we want to run the second stage. Before doing this, we should note the following useful property of
fitted values:

Cov (yi, i‘l) = Cov (@z + Ui, i‘l) = Cov (Q“ i‘l)

where § and ¢ are fitted values and residuals from a regression of y on the 2’s. Therefore, in the second
stage, we can put the §’s on the left-hand side instead of the y’s and it doesn’t make a difference. The second
stage OLS regression is therefore

Yk = o+ BT + €,

where there are ny copies of each (gx,Z)) pair in the data. This is a regression of group means on group
means, with n; copies of each pair. Therefore,

( GasLs ) = arg fgiﬁnz (s — o — By)’
B

52SLS

BasLs

G25LS . _ _
< A ) = arg Tglglz i (G — o — Bax)’
Tk

This is a weighted least squares (WLS) regression using the group-means, with weights equal to group sizes.
This is GLS on the equation

Uk = a+ BT + e

So, to interpret: IV with group dummies as instruments is equivalent to GLS estimation of the group-mean
equation. Note the contrast with fixed effects. When we do FE, we assume that permanent variation across
groups is “contaminated” and therefore use only the within-group variation. When we do IV, we assume
that the within-group variation is contaminated and use only the variation in means across groups.

Finally, one more fact: The minimized GLS minimand is
TS (e —a— B
_Zﬁ' (yk—a—ﬁxk>
k
This statistic doubles as an overidentification test of the validity of the instruments. Under the null hypothesis
that all of the instruments are valid, it will have a x% _; distribution. (We can do an overid test whenever
we have more instruments than endogenous variables). If it is larger than the relevant critical value from

the x? distribution, we will reject the hypothesis that all of our instruments are valid, though we will not
know which ones are invalid.

3 Life Cycle Model

3.1 Model recap

In class we saw the LC model



_ 1 02
V(p,’UJ,A()) - max By ; (1 [’710t '72}1

cy...cyhy ... +p)t

s.t.
PeCt wtht
Z (1+7)t Aot Z (1+7)t
Just looking at the problem setup, we can already make some important observations.

1. In this problem there are no constraints on savings; in a given period, s; = wyh: — psc; can be anything,
positive or negative. In other words, the agent can borrow and lend freely as much as she wants at
the interest rate r. You can imagine other versions of this problem with constraints on savings (for
example s; > 0, no borrowing), or with different interest rates for borrowing and for lending, etc. Such
extensions will often importantly change the conclusions we get from the model.

2. Concavity of the within period utility function (here we will get this by assuming do > 1, §; < 1) gives
an incentive to smooth consumption and work effort over time. It doesn’t make sense for the agent to
consume a lot in some periods and a little in others — since she can freely move resources through time,
she will want to equalize her marginal utilities from consumption in different time periods. The same
incentive exists for hours, though in analyzing this model we usually focus on fluctuations in the wage
rate over time and assume goods prices are roughly fixed. This will generate a countervailing incentive
to work more in some periods and less in others, as we will see.

3. Using the envelope theorem and assigning A as the Lagrange multiplier on the constraint, we can see
that

v

04y
A can therefore be interpreted as the marginal utility the agent gets from another dollar in present
value; it is her “lifetime” marginal utility of income. V will be concave in A, so as the agent gets richer
A goes down. When we solve the maximization problem, A will end up being a function of all wages,
prices, and the non-labor income level.

For simplicity set p, = 1 Vt. If we set up a Lagrangian, take FOCs, and then take logs, we will obtain

log A (p—r),  logm +logd

e I B I O L T
_log) log w; (p—r), (logys —logda)
e = G, e o) T e (02— 1)

The main insights of the lifecycle model are visible from these two equations.

1. ¢; only depends on w; through A. A is a sufficient statistic for wages in all periods when it comes to
consumption. To put it another way, current consumption is completely divorced from current period
wages; all that matters is the agent’s lifetime marginal utility of income.

2. The effect of a change in w; on h; operates through two channels.

dlog hy 0 log A
—— =5+6-
0log wy + dlog wy log wy



where § =

1
T > 0. We call § the Intertemporal Substitution Elasticity (ISE). This equation tells
y —
us that the effect of a wage change has a substitution effect (the ISE), and then an effect that operates
through the change in A; this is a lifetime wealth effect. Note that these two effects act in opposite
directions. A higher wage means that the agent is better off, so her marginal utility will go down as

the wage in a given period increases.

This model therefore offers a simple framework for thinking about how changes in wages should affect labor
supply. The ISE is the relevant parameter for evaluating the effects of wage changes that do not affect the
marginal utility of income. Such changes are either small and temporary (so that to a first approximation
they do not affect A) or anticipated (so that they are already built into A\). As we’ve written the problem, it
doesn’t really make sense to talk about anticipated vs. unanticipated changes since we’ve assumed perfect
certainty, but the basic insights go through if we add uncertainty and rational expectations. In contrast,
any change that is large, permanent, and unanticipated (like getting fired from a job for which you’ve
accumulated a lot of firm-specific human capital) should have an effect on A. The ISE will therefore be the
wrong parameter for evaluating the effects of changes like this.

3.2 Lifecycle metrics

We’ve spent some time in lecture talking about how to estimate the paramters of the lifecycle model. In
particular, if we have data on individuals ¢, the labor supply equation from section 3.1 become

log hyt = dlogwit + 0(p — )t 4+ Fi + iy
How do we estimate this equation?

1. Approach 1: Ordinary Least Squares

e Problem 1: F; is unobservable and includes \;, which will be negatively correlated with logw;;.
From the omitted variables bias formula, we know that this will tend to make our estimates of §
too small.

2. Approach 2: Fixed Effects

e Fixed effects will solve the problem with omitting F; since it is constant over time. This is the
approach taken by a lot of labor supply papers from the 1980s.

e Problem 2: But wages tend to be measured with error, and doing fixed effects exacerbates mea-
surement error problems. In fact, both OLS and FE on this equation are vulnerable to a special
type of measurement error known as “division bias,” which can even reverse the sign of the co-
efficient of interest. Indeed, many old labor supply papers find very small and even negative
estimates of §. T'll discuss this more in section 3.3.

3. Approach 3: Instrumental Variables

e The general solution to omitted variable bias and measurement error is IV. Angrist (1991) esti-
mates the panel labor supply equation using time dummies as instruments. The rationale for this
is that cyclical shocks associated with the business cycle should be interpreted as shifts in labor
demand; these shocks are not large enough to alter A, so there should be no year effects on labor
supply independent from changes in the wage. As we saw in section 2.5, IV using time dummies
as instruments is algebraically equivalent to estimating the grouped equation

log h, = dlogw; +0(p — )t + F + 7



e Angrist (1991) estimates this grouped equation and gets an estimate of § around 0.6, which is
much larger than the usual FE estimates and suggests that the lifecycle model may be useful for
explaining variation in labor supply.

e Problem 3: The exclusion restriction required for the Angrist (1991) approach to work may not
hold. In particular, Card (1994) argues that shocks associated with the business cycle may be
large enough to substantially alter lifetime wealth levels, in which case there should be time effects
in the above equation (A should change with the business cycle) and the grouped regression will
not identify the ISE.

4. Approach 4: Short-term experiments

e Problems 1-3 have left us without any airtight estimates of §. The modern labor supply literature
uses credibly exogenous short-term variation in wages coming from randomized experiments (e.g.
the Fehr and Goette paper on bike messengers) or specific industries with special characteristics
(e.g. the Oettinger paper on stadium vendors or the Camerer et al. paper on cab drivers) to
achieve identification of the ISE.

e These papers tend to find fairly large estimates of the ISE (though this is not always true in the
cab drivers literature)

e Problem 4: These short-term experiments may have better identification than traditional labor
supply studies, but they look only at very small, idiosyncratic professions. The workers and jobs
in these professions may have characteristics that differ importantly from those of the general
population, and these may affect their labor supply behavior. For example, bike messengers are
generally very young. Furthermore, they have the opportunity to choose when and how long they
work. While this may help with identification of the ISE for this group, most jobs do not have
this feature. To put this critique another way, these experiments may have good internal validity,
but their external validity is not clear.

3.3 Division Bias

It is worth going through the math of division bias a little more carefully. Suppose we are not worried about
OVB for the moment, and we want to estimate the equation

logh? = a+dlogw! +n;

If we had data on true hours and wages h! and w; we would be able to consistently estimate J; in other
words, Cov(logw},n;) = 0.

However, many people do not report an explicit hourly wage, so we have to compute w. If we had perfect
measures of hours and earnings, we could successfully compute the true w; :

*
Q *
hi

Furthermore, hours are measured with multiplicative error v;, which we can assume is independent of every-
thing else in the model. We observe:

hi = hi - v, Y

So observed wages are

W;
hi Ui/f’<



= logw; = logw; — logv;
Suppose we regress observed hours on observed wages using OLS. Then we obtain

limd — Cov (log h;, log w;)
b  Var (logw;)

_ Cov (log hi + vy, logw; —logwv;)
B Var (log wf — log v;)

_ Cov(a+dlogw; +n; + logv;, logw; — logv;)
N Var (logw; — logv;)

_ Var (logwy) _ Var (logv;)
~ Var (logw}) + Var (logv;)  Var (logw}) + Var (logv;)

The first term shows the usual attenuation bias result — § is multiplied by a positive number less than one, so
the measurement error in w will pull our estimate towards zero. However, we also have a second term that
is unambiguously negative; this term comes from the correlation between the measurement error on the left
hand side and the measurement error in the denominator of our right hand side variable of interest. With a
positive §, this makes attenuation bias worse and can even reverse the sign of the coefficient.
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