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1 IV and Grouped Regression
Suppose that we want to estimate
yi=a+fr;+¢

and we have instruments z;...2x, which are mutually exclusive and exhaustive dummy variables. This is the
situation in Angrist (1991), where the z’s are year dummies, y is log hours, and z is log wages. Suppose
that nj observations have z;; = 1. As we saw in lecture, 2SLS in this setup will turn out to be algebraically
equivalent to GLS on means of y and =, where the groups are observations with different z’s switched on.

We want to use these instruments to run 2SLS. Recall the 2SLS procedure:

1. Regress z; on the 2’s and get the fitted values, Z;

2. Regress y; on ;

The first stage is
x; = Zim+

where z; is now a vector including all of the z’s. Using the multivariate OLS formula, the first stage coefficient

vector will be
-1

It is worth thinking about what this object is. We know that z; looks like

That is, for individuals in group k&, it will have a 1 in the k-th position and zeros everywhere else. Then the
matrix z;z} is



4 KxK

For individuals in group k, this K x K matrix has a 1 on the k-th position on the diagonal, and it has zeros
everywhere else. The sum over all observations is
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Similarly, we have
0
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for an individual in group k. Summing these up,
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So the first-stage coefficient vector is
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And the first stage fitted values are

4 Kx1

So the first-stage fitted values are group means! In our data, the fitted values look like this:
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We have n; copies of Z1, followed by ny copies of Zs, etc.

Next, we want to run the second stage by regressing y; on ;. Before doing this, we should note the following

useful property of fitted values:

CO”U (yzai'z) = CO’U (gz -+ gzai'z) = CO’U (gz,i'z)

where 3 and gy are fitted values and residuals from a regression of y on the z’s. Therefore, in the second
stage, we can put the g’s on the left-hand side instead of the y’s and it doesn’t make a difference. The second

stage OLS regression is therefore



Yp = o+ BT + €,

where there are ny copies of each (gx,Z)) pair in the data. This is a regression of group means on group
means, with ny copies of each pair. Therefore,
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This is a weighted least squares (WLS) regression using the group-means, with weights equal to group sizes!

Note that WLS using group-sizes as weights is generalized least squares (GLS) on the equation
Uk = o+ BT + €
where we now have 1 observation per group. If our original microdata model was
yi = a+ Bx; + €, Var (e;) = 02,
then in the grouped equation
€, = € for i in group k,

SO

2
Var (e) = Z—k

We therefore have heteroskedasticity in the grouped equation, and the efficient thing to do is to weight each
observation by the inverse of its variance, i.e., group size.

So, to interpret what we’ve shown: IV with group dummies as instruments is equivalent to GLS estimation of
the group-mean equation. Note the contrast with fixed effects. When we do FE, we assume that permanent
variation across groups is “contaminated” and therefore use only the within-group variation. When we do
IV, we assume that the within-group variation is contaminated and use only the variation in means across
groups.

Finally, one more fact: The minimized GLS minimand is

T=3 % (- a-fa)

k

This statistic doubles as an overidentification test of the validity of the instruments. Under the null hypothesis
that all of the instruments are valid, it will have a x% _; distribution. (We can do an overid test whenever
we have more instruments than endogenous variables). If it is larger than the relevant critical value from
the x2 distribution, we will reject the hypothesis that all of our instruments are valid, though we will not
know which ones are invalid.



2 Overidentification tests
Let’s return to our simple (possibly endogenous) regression
Yi = a+ B + €

As T noted in a previous recitation, if we have a single instrument z;, the “exclusion restriction” that
Cov(z;,€;) = 0 is not testable. However, if we have many instruments, we can jointly test all of the ex-
clusion restrictions together. Suppose we’ve run 2SLS, gotten 3, and obtained the residuals ¢;. If we've
gotten something close to the true 5 and the exclusion restrictions are valid, then intuitively the é’s should
not exhibit much correlation with the z’s. To check this, let’s think about running the regression

We want to test Hy : 6 = 0. The OLS estimator of § will be

(o) ()

To perform tests on this object, we need to get its distribution. Let’s multiply by v/ N:
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The law of large numbers and the continuous mapping theorem tell us that
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As long as our null hypothesis is true, € and z are uncorrelated, and since we are working with plims we can
replace € with e. The CLT then gives us that
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Zziei — N (0,Var (z;)) = N (0,0%E [2;2]])
Combining this with the first term yields

VN — N (0,02E [zizﬂ_l)

Since we now know the distribution of § under Hjy, we can form a test statistic. The usual way to do this
with a vector is to construct the quadratic form

T = (VN&) Var (V) (VD)

Under Hy, this is a quadratic form in a multivarite normal random vector, so it will have a x? distribution.
Filling in some terms, we have
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This is an “omnibus” overidentification test for the validity of our instruments. It will have a x? distribution
with degrees of freedom equal to the degree of overidentification (K — 1). In the dummy instrument case
above, the same manipulations we did before can be used to show that 7’ just turns out to be the minimized
minmand for grouped data GLS. If this statistic is very large, we will reject Hy, and we will therefore conclude
that we have at least one invalid instrument; we can’t know which one it is without further information.
There are many other versions of overidentification testing, but usually they boil down to the same thing:
Checking to see whether the residuals and instruments are “close enough” to orthogonal in a statistical sense,
often by regressing the residuals on the instruments. You can also see from this formula why we can’t do an
overid test with only one instrument (hint: what first-order condition does univariate IV solve?)

3 Division Bias

It is worth going through the math of division bias a little more carefully. Suppose we are not worried about
OVB for the moment, and we want to estimate the equation

logh? = a+ dlogw! +n;

If we had data on true hours and wages h! and w; we would be able to consistently estimate J; in other
words, Cov(logw},n;) = 0.

However, many people do not report an explicit hourly wage, so we have to compute w. If we had perfect
measures of hours and earnings, we could successfully compute the true w; :

*
wr = Y
T ok
hi

Furthermore, hours are measured with multiplicative error v;, which we can assume is independent of every-
thing else in the model. We observe:

_ L *
hi - h/; Vg, yz
So observed wages are
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= logw; = logw; — logv;
Suppose we regress observed hours on observed wages using OLS. Then we obtain

plimd = Cov (log h;, log w;)

Var (logw;)



_ Couv (log hi + vy, logw; —logwv;)
B Var (log wf — log v;)

_ Cov(a+dlogw; +n; + logv;, logw; — logv;)
N Var (logw; — logv;)

_5 Var (logwy) _ Var (logv;)
~ Var (logw}) + Var (logv;)  Var (logw}) + Var (logv;)

The first term shows the usual attenuation bias result — § is multiplied by a positive number less than one, so
the measurement error in w will pull our estimate towards zero. However, we also have a second term that
is unambiguously negative; this term comes from the correlation between the measurement error on the left
hand side and the measurement error in the denominator of our right hand side variable of interest. With a
positive §, this makes attenuation bias worse and can even reverse the sign of the coefficient.
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