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1 The Potential Outcomes Framework

1.1 Setup

In labor we are often interested in estimating the causal effect of some treatment on some outcome. For
example, we might want to know the effect of having children on maternal labor supply, as in Angrist and
Evans (1998). To think about this clearly, let’s introduce some notation:

Yi; = 7’s outcome if she is treated
Yo; = 7’s outcome if she is not treated
In the fertility example, Y7; is woman i’s LFP if she has more than 2 kids, and Yj; is her LFP if she doesn’t.

We usually denote treatment using the notation

D — 1, < got treated
“ 10, idid not get treated

In our example, D; is an indicator for having more than 2 kids.

We are now in a position to think about causal effects. In particular, let’s define
Bi = Y1 — Yo

This is the causal effect of treatment for individual i; it is the difference between the outcomes she
would experience in the treated and non-treated states. The central problem in econometric inference is that
we can never observe both Yy; and Yy, for a single individual. Instead, we only observe one or the other,
depending on actual treatment status. That is, we observe

v Y ifD;=1
Yo, if D; =0

or (to write this more compactly)
Yi = Yoi + (Y1i — Yoi) Di

Y = Yo, + BiD;



For now, let’s assume constant effects: 3; = 8 Vi. Furthermore, let’s define a = F [Yp;]. Then we can
write

Yi=a+pDi+e (1)
where
€ = Yoi — E[Yo]

This looks like a regression. But is it?

1.2 Distinction: Regressions vs. Causal Models

Above, we've written something that looks like the bivariate regressions that we are used to running. But it
is important to realize that it is a causal model — as written, S is the causal effect of D; on Y;. We could
write down a second equation:

Y, =ar+ BrD; +¢; (2)

This is the population regression of Y; on D;, with coefficients defined by
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The FOC for this problem is
E[D;(Y; —ag — BrD;i)] =0
= F [DL(’,Z] =0

That is, the coefficients ap and S are defined to make D; and e; orthogonal. ai and Sr are the coefficients
that we would get by running OLS in arbitrarily large samples; they are the solutions to the population least
squares problem.

The crucial point to understand is that equation (1) may not be a regression. In that model, things were
defined in terms of potential outcomes, and 5 has a causal interpretation. It is not necessary that D; and
€; are uncorrelated. If they are correlated, regressing Y; on D; will produce g and Sg, which are not the
same as a and B! In contrast, the regression error e; is uncorrelated with D; by definition.

1.3 When will regression give us causal parameters?

As discussed in section 1.2, the coefficients that we get from regressing Y; on D; (ag and Sgr) may not give
us the parameters of the causal relationship we are interested in (« and 3). Since D; is a dummy variable,
we know that running a regression will produce a simple difference in means:
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— B[Y,— E[Y)||Di = 1] - E[Y, = E[Y}) D, = 0]
= E[Y;|D; =1] - E[Y;|D; = 0]
We can use our causal model to work this out. It says that
Br=FEla+BD;+¢€|D; =1] — E[a+ D; + €|D; = 0]
=B+ Ele|D; =1] — Ele|D; = 0]
= B+{E [Yoi|D; = 1] — E [Y;| D; = 0]}
That is, regression gives us the causal parameter of interest, plus the difference in average Y; between
treated and non-treated individuals. This may not be zero. In the fertility example, if there is any
reason that potential outcomes differ systematically between women who do and don’t have a third child

(for example, if women who have three kids would have earned less than women who have two anyway),
regression will not produce the causal 5. A necessary and sufficient condition for Sg = (5 is then

Yo: L D;

2 IV in the Potential Outcomes Framework

In the fertility example (and many others), it is implausible that Yj; is unrelated to D;, so the observed
relationship between Y and D will fail to give us the causal parameter of interest. In situations like this, we
need an instrument. Let’s suppose we’re considering Z; € {0,1}. The first stage and exclusion restrictions
are:

1. E[Di|Z; =1] # E[D;|Z; = 0]
2. EYy|Z; = 1] = E Yo Zi = 0]

This tells us that Z; shifts D; on average, but Y, is orthogonal to Z;. IV will produce

By = Cov (Y;, Z;)
W= Cov (D“Zl)

Cov(Yi,Zi)/Var(Zi)

- Cov(Di,Zi)/Var(Zi)

EYi|Z; = 1) - E[Yi|Z; = 0]

~ E[Di|Z = 1] - E Di|Z; = 0]




This is the population Wald formula (or the Wald estimand). It is the ratio of the reduced form (the effect
of Z on Y) to the first stage (the effect of Z on D). Under assumptions (1) and (2), this will give us

E[a—i—ﬁDl +€i|Zi = 1] —E[Oz-i—ﬁDi +6i|Zi = 0}
E[D;|Z; =1] - E[D;|Z; = 0]

5IV:

B(E[Di|Z; =1] — E[D;|Z; = 0]) + (E [Yoi| Zi = 1] — E [Yo:| Zi = 0])
EDiZi =1 — EDi|Z = 0]

=B

So IV yields the causal parameter of interest.

Angrist and Evans use two instruments to estimate the effect of family size on maternal LFP: Twinning, and
sibling sex composition. To see the motivation for the twins instrument, think about limiting your sample
to women who have at least two kids. In this sample, there will be some women who would like to stop
at 2. But some of these women will have twins at second birth, so they will end up with 3. We should
therefore expect the “twins at second birth” group to have more children on average, so there is a first stage.
Furthermore, since having twins rather than a single at your second birth is essentially random (subject to
the age and ethnicity caveats Josh gave in class), we might think that it’s uncorrelated with anything else
that affects labor force participation; this is the exclusion restriction.

To see the case for the sex composition instrument, suppose that some families have a preference for a
“diversified sibling sex portfolio:” They would like to have kids of both sexes. Consider the sample of families
who have decided to have a second child. In some of these families, the second birth will result in a boy/girl
combo; in the rest, it will not. Some of the families who end up with two kids of the same sex will choose to
keep trying and have a third in order to achieve a diversified portfolio. Therefore, families who end up with
a matched pair will have more children on average than families who get diversification at second birth, and
we have a first stage. Since the sex of the second child is random and seems unlikely to affect LFP through
other channels, we might expect the exclusion restriction to hold.

Note that the exclusion restriction is subtle. In particular, random assignment of Z does not guarantee
the exclusion restriction. We know that random assignment of Z will give us a causal interpretation of
the reduced form, so we know that getting twins at second birth decreases maternal LFP (assuming twinning
is truly random). But the exclusion restriction says that family size is the only channel through which
maternal LFP is affected by twinning. To see how this might fail even with random assignment, suppose
that a twin birth is physically more difficult for the mother, and therefore more likely to lead to health
complications for her. Mothers who have twins might therefore work less due to poor health rather than
because of family size. We might think of this as a direct effect of twinning on Y{;, which is a little awkward
in the framework that we’ve written down. This particular channel seems unlikely, but the point is that one
must always make a case for the exclusion restriction, and you can’t just appeal to random assignment!

3 Heterogeneous Treatment Effects

3.1 Setup

Now let’s relax the clearly unrealistic assumption that treatment effects are the same for everyone. Our
causal model is then

Yi=a+ 8D+ €

In this case, what we want to estimate is no longer clear. A couple of plausible candidates are:



ATE : E|fi]
TOT : E[Bi|D; = 1]
When will regression give us something interesting? As before, the population regression coefficient is
Br=EY;|D; =1] = E[Y;|D; = (]
=FEla+BiD; +&|D; =1] — Ela+ 3;D; + &|D; = 0]
= FE|[Bi|D; =1]+ Ele;|D; = 1] — Ee;|D; = 0]
= B [Bi|D; = 1] + {E[Yoi| Di = 1] — E[Yo;| D; = 0]}

So as before, regression gives us an object of interest (the TOT) plus the difference in average Y, between
those who take the treatment and those who don’t.

3.2 IV with heterogeneous treatment effects

Suppose we are not confident that D; is orthogonal to Yy;, so we want to do IV. We need to add more
notation. Let Z; € {0,1} be our candidate for an instrument, and Y;(d, z) be #’s potential outcome when
D; =d and Z; = z. We can also define treatment status as a function of the instrument: Di; is treatment
status if Z; = 1 and likewise for Dg;, so

D; = Dy; + (D1; — Do;) Z;

1. Independence: Y;(d, z), Dy;, Di; are independent of Z;
2. Exclusion: Y;(d,0) =Y;(d,1) =Yy, Vd
3. First stage: E [Dh — DOi] 75 0

4. Monotonicity: D1; > Dy; Vi

What we were calling the “exclusion restriction” before actually bundled requirements (1) and (2). Now,
when we do IV, we obtain

_ EYilZ =1-EYi|Z =0
Brv = E[D;|Z; =1]— E[D;|Z; =0

 EYoi+ BiD;|Z; = 1) — E [Yo; + B:D;| Z; = 0]
= EDi|Z = 1| = E Dy Zi = 0]

E Yo + 8iD1i| Z; = 1] — E [Yo; + BiDoi| Z; = 0]
E [D11|Z1' = 1] —F [D0i|Zi = O]

Now, using independence, we have

_ E[Yo; + BiDyi] — E [Yoi + Bi Do)
E[Dy;] — E [Dy;)




_ LK [BiD1i] — E[BiDo;]
E [Dy;] — E [Dy;]

_E [Bi (D15 — Do;)]
E[Dy; — Do)

_E [Bi|D1i > Do;] Pr[Dy; > Do;] + 0Pr [Dy; = Do)
Pr [DM > D()i]

= E[B;|D1; > Do;]

This is the Local Average Treatment Effect, or LATE. It tells us that IV estimates the average treatment

effect FOR INDIVIDUALS WHOSE TREATMENT STATUS IS SHIFTED BY THE INSTRUMENT. We
can think about 4 possible groups:

1. Always takers: Dy; = Dg; =1
2. Never takers: Dy; = Dg; =0

3. Compliers: D1; =1, Dyg; =0
4. Defiers: D1; =0, Dg; =1

Monotonicity rules out defiers, and LATE is the average causal effect on compliers.
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