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Today we're going to cover some classic topics from consumer theory. In particular, we want to examine
what it means for goods to be substitutes or complements in the most rigorous sense.

1 Properties of Hicksian Demand
1.1 Background
Recall the Expenditure Minimization Problem:
e(p,u) = mminp -z
s.t.
u(z) >a

The consumption vector that solves this problem is 2:¢ (p, @), the Hicksian (or “compensated”) demand func-

tion. The minimized minimand, e(p, @), is the expenditure function. The derivatives S;; = 32? are compen-
J

sated price responses; as we have seen, these are intimately related to substitution.

In an earlier recitation, we derived 2 properties of the expenditure function:

e (p,u)
Op;

2. Concavity: e (p,u) is concave in prices. That is, e (ap1 + (1 — a)po, @) > ae (p1,a) + (1 — a)e (po, ).
Intuitively, this is a consequence of substitution.

1. Shephard’s Lemma: = z{. This is a consequence of the envelope theorem.

We will use these in the proofs below.

1.2 The Slutsky Substitution Matrix

The compensated price responses S;; tell us how demand changes as we change prices, compensating the
agent to keep him on the same indifference curve These are pure substitution effects. To analyze these
derivatives we usually organize them into the matrix

Si11 Sz ... Sin
g Sa1 S22 :
Sni - oo+ Snn



The notable properties of the Slutsky matrix are:
1. Symmetry: S;; = Sj;.

This property is a direct consequence of Shephard’s Lemma. Since S;; is the cross-partial derivative of the
expenditure function, and the order of differentiation doesn’t matter, it must be equal to Sj;:

g 02 _ 0 {36(;0,17)} _ Pelpu) _ o
Y Op;  Opj | Opi OpiOp; ’

2. Negative Semi-Definiteness: For any vector ¢t and any prices p, t'S(p)t < 0.

This is a consequence of concavity of the expenditure function. Since z°(p, @) = Vpe(p,a), the Slutsky
matrix is the matrix of second derivatives of the expenditure function with respect to price:

If a function is concave and differentiable, the second derivative matrix is necessarily negative semi-definite.
Because deriving this result directly is informative, I provide a direct proof at the end of these notes.

This property is actually quite intuitive. One consequence of negative semi-definiteness is that the determi-
nants of the principle submatrices must alternate in sign, starting with a negative. In the 2 x 2 case this
means that

e S11 < 0: Own-price compensated price responses are negative. In other words, if the price of a good

increases, the substitution effect leads to decreased consumption of that good. Since the order of goods
in the matrix is arbitrary, this implies that S;; < 0 V4.

o 511595 — S%Q > 0: Own-price substitution effects are large enough to “swamp” cross-price effects in this
specific sense.

1.3 Homogeneity

Other noteworth properties of Hicksian Demand involve homogeneity. To derive these, we first need a couple
of definitions and results that you’ve probably seen before:

1. A function f(z), where z is a vector, is homogeneous of degree k if f(az) = o f(z) for any a.

2. If f(z) is homogeneous of degree k, then V f is homogeneous of degree (k — 1).

3. Euler’s Theorem: If f(z) is homogeneous of degree k, then Z g—f sz =kf(2)
- Zj
J
To apply these to Hicksian Demand, note that
e(ap,u) = minap - x s.t. u(x) > u
=aminp -z s.t. u(z) >a
xz

= ae(p, 1),



so the expenditure function is h.o.d. 1 in prices. Intuitively, if all prices are doubled, it costs me
exactly twice as much to get to a given utility level.

Since x¢ = Ve by Shephard’s Lemma, it immediately follows that Hicksian demands are h.o.d. 0 in
prices. This is also quite intuitive; if all prices are scaled up by the same factor, it costs me more in nominal
terms to get to a given utility level, but the goods I buy to get there don’t change since relative prices are
still the same.

If we apply Euler’s theorem to the Hicksian demand function for good i, we have that

5 opi

That is,

Z Sijpj =0.
J

2 Substitutes and Complements

2.1 Definition
We are now in a position to think about substitutes and complements:
Goods i and j are Hicksian (p-)complements if S;; <0
Goods 7 and j are Hicksian (p-)substitutes if S;; > 0
Intuitively, ¢ and j are substitutes if an increase in the price of good j leads me to consume more ; I substitute

away from j towards i. Note that these definitions are only about substitution. Since we’re talking about
Hicksian demands, there are no income effects.

2.2 Two-good case
If there are only two goods, then the Euler’s Theorem result from above says that

0z 0x§
Py + D2

=0
D2 Op2

ox$ ors§
g, =M 0
Opa p1 - Op2

That is, when there are only two goods, they are necessarily substitutes. This makes sense — if the price
of good 2 increases, the compensated demand for good 2 must fall since own-price substitution effects are
negative. But by definition of compensated demand, the consumer must end up with the same utility as
before. With two goods, the only way to get back the lost utility coming from the reduction in x5 is to
increase x1. This is also clear graphically; there is no way to draw a movement along an indifference curve
in reponse to an increase in the price of good 2 that results in less consumption of good 1.

This analysis shows that when we talk about complements in the 2-good scenario, we are really talking about
cases where the negative income effect for good j overwhelms the positive substitution effect when the price
of 7 goes up. In some sense goods like this are “weak” substitutes, but using the Hicksian definition they are
still substitutes and not complements.

The classic 2-good example of “complements” is the Leontief utility function;



u(xy,x2) = min{axy, bxo}

With these preferences the consumer purchases x; and xo only in fixed proportions: xo = Fx1. Note,
however, that if we draw this in 2-d you can see that if prices change and the consumer stays on the same
indifference curve, consumption does not change at all. This is as close to Hicksian complementarity as we

can get with 2 goods.

2.3 Preferences and Substitutes

We often work with utility functions that actually implicitly impose that all goods are substitutes in the

Hicksian sense. In particular, for utility functions of the form

u(z) = F (vi(x1) + ... + oy (2n))

with F' increasing and the v’s concave, all goods must be substitutes. Many common preference structures

are of this form; for example, consider the Stone-Geary Preferences

u(r) = H (i — 7)™ @i >y

This is of the additive form discussed above, with

F(-) = exp(-), and v;(z;) = ; log (v; — ;)

So with Stone-Geary preferences, it must be the case that all goods are substitutes even with more than 2.

To derive this result for the general case, note that the FOCs determining the choice of good i is

F'()vi(xi) = Api

SO

Hicksian demands satisfy

— g=F Ul(xi) + Zvi (’Ug_l (U;/L(l‘l) ) %))

i#1

Let’s differentiate this object w.r.t. pa:
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Under our assumptions, v; > 0, and the v; are concave so v, (and therefore fu;_l) are decreasing so
vl (v{_l) < 0 . This whole expression is therefore positive. Since the choice of goods 1 and 2 was

70 %

arbitrary, this works for any pair, and all goods are substitutes.

2.4 Complements

The above result shows that for a wide class of preferences, all goods must be substitutes. So what do
preferences look like for complements? We know that there must be at least 3 goods. Consider the preferences

U(w,y,z) = «* (min {y, 2})'

It is clear that with these preferences, y and z will be complements. The consumer will always consume y
and z in fixed proportions; to do anything else would be to waste money that could be spent on x. What
happens when p, goes up? Intuitively, the consumer will want to shift consumption away from z and towards
x since z and z are substitutes. But reducing consumption of z means reducing consumption of y; if she
buys less z, then she has no need for some of her y, so we should expect (%’z < 0. To see this mathematically,
note that since y = 2z at the optimum, we can up the EMP as

min p,x + (py + pz)y
S.t.
.’anl_a > 1

By the usual FOC, we’ll have

Dz _ « Y
Dy + D2 l—a =z
Pz l-a
— <py+pz a )ayﬂ
Pz 1-a«
« P ¢
— y=1u- . z
Y (1a py+pz>
dy _ o .\ a Pa
= —u« . . . 5 <0
dp. l-a Dy + D= -« (py+p2)

so these are complements.

More generally, if the utility function is



y and z are complements as long as

The subutility over y and z is a constant elasticity of substitution (CES) function; the elasticity of substitution

o o 1
is 0=

Appendix: Direct Proof of Slutsky Negative Semi-Definiteness

Let h(p,u) be the Hicksian demand vector, where p is the price vector. The expenditure function is

(:’(p, ’LL) = Zpihi =p- h(p7 u)

where the last equality uses the dot product. The Slutksy substitution matrix is defined as

Ohy Ohy Oh1

Op1 dp2 "' Opn

Ohs Oho :
S — Dph(p7 u) — 81.)1 Op2

Ohn ... ... Ohn

Op1 IpN

where D, denotes a matrix derivative. We want to prove that S is negative semi-definite:
For any vector t, 'St <0

To prove this, we will first prove the following lemma:

Lemma (Compensated Law of Demand):
For any pair of price vectors p’ and p and any utility level u, (p’ — p) - (h(p’,u) — h(p,u)) <0

Proof:
Note that

(0" —p) - (h(p',u) = h(p,u)) =p" - h(p',u) —p" - h(p,u) +p- hp,u) —p-h(p',u)
= [e(p',u) —p" - h(p,w)] — [e(p,u) — p- h(p', u)]

Since h(p, u) yields utility u, it must be more expensive than e(p’, u) at prices p’, so the first term is negative.
The same argument holds for the second term, so the whole quantity is negative and we have the lemma.
Now, we can move on to proving negative semi-definiteness of the Slutsky matrix.

Proof of negative semi-definiteness:

Consider arbitrary price vectors p’ and p. Define



v=p —p

p(t)=p+t-v=p+tp'—tp

where ¢ is a scalar. Now define the following function of ¢:
g(t) =v- (h(p(t)) — h(p))

Here I've suppressed dependence on u and written h(p,u) = h(p); the following works for any u. Note that

g'(t) = v'Dph(p(t)) - (P — p)

— v S(p(O)v
Here T’ve just used properties of matrix derivatives. Next consider what happens around 0:
p0)=p+0-v=p
SO
9(0) = (' = p) - (h(p) — h(p)) = 0

Next, note that for ¢ #£ 0,

SO we can write
o(t) = 5 (0lt) — p) - ((p(t)) — h(p))

By the compensated law of demand, we therefore know that g(¢) < 0 for any ¢ > 0. Since ¢g(0) = 0 and
g(t) <0 for t > 0, we must have ¢’(0) < 0; if ¢’(0) was positive, then for small enough ¢ we would have g(t)
positive, which we know isn’t true. But using the expression above, we know that

9'(0) = v'S(p(0))v
=v'S(p)v <0

Since p and p’ were arbitrary, we can vary p’ to make v whatever vector we want, so we’ve proved that for
any v

v'S(p)v <0

which means that the Slutsky matrix S is negative semi-definite.
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