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1 Measurement Error
1.1 Classical RHS measurement error
We covered this case in a previous recitation. The model of interest is
yi = o+ faf + e
with Cov(z},€;) = 0. We observe y and
Ty =] + v,
with Cov(z},v;) = Cov(e;,v;) =0
Note that we can write
yi =a+ B —vi) + &
= yi =a+fr;+e— Py

We have correlation between z; and our new error term €; — fv;, so we can expect problems with OLS. If
we regress Y on x;, our estimator will plim to

.5 Cov (yf’: I’L)
! — 290N\t
plimfBors Var(z:)
B Cov (o + pzf + €, xF +v;)
- Var () + Var(v;) + 2Cov(z}, v;)

Var (zF)

=5 Var (zf) + Var (v;)

This is classical attenuation bias, which pulls our estimate of 8 towards zero.



1.2 Classical LHS measurement error

Now suppose we observe the true z, but instead of y; we observe the dependent variable with error:
Yi = Yi +u;

with Cov(u;, 7)) = Cov(u;,€;) = 0. Our OLS estimate of 8 will plim to

LA _ Cov (2}, y)
plimBors = Var (z7)

_ Cov(z],a+ Bx} + € + v;)
B Var (z})

Var (z})
Var (x})

=0
So there is no problem with classical measurement error on the left-hand side. Intuitively, such measurement

error is just adding to the residual variance in the model (so it will increase our standard errors), but it
doesn’t affect consistency.

1.3 Division bias

Suppose we are not worried about OVB for the moment, and we want to estimate the equation
logh? = a+dlogw! +n;

If we had data on true hours and wages h; and w; we would be able to consistently estimate J; in other
words, Cov(logw},n;) = 0.

However, many people do not report an explicit hourly wage, so we have to compute w. If we had perfect
measures of hours and earnings, we could successfully compute the true w; :

*
2 *
hi

Furthermore, hours are measured with multiplicative error v;, which we can assume is independent of every-
thing else in the model. We observe:

__ % *
hi — hi + Vg, yq,
So observed wages are

* *
Yi Yi
wi = Zr = L

= logw; = logw; — logv;



Suppose we regress observed hours on observed wages using OLS. Then we obtain

lim$ — Cov (log h;, log w;)
p ~ Var (logw;)

_ Cov (log h} + v;,logw; —logv;)
B Var (log wf — log v;)

_ Cov(a+dlogw; + n; + logv;, logw; — logv;)
N Var (log wf — log v;)

s Var (logwy) 3 Var (logv;)
-~ Var (logw}) + Var (logv;)  Var (logw;) + Var (logv;)

The first term shows the usual attenuation bias result — § is multiplied by a positive number less than one, so
the measurement error in w will pull our estimate towards zero. However, we also have a second term that
is unambiguously negative; this term comes from the correlation between the measurement error on the left
hand side and the measurement error in the denominator of our right hand side variable of interest. With a
positive §, this makes attenuation bias worse and can even reverse the sign of the coefficient.

1.4 Additional controls
Suppose the true model is as before, we observe x; instead of z}, and we include an additional regressor a;
(even though there is no omitted variable bias). Assume our measurement error and e are uncorrelated with

a;. As usual, we can think about running our multivariate regression in 2 steps:

1. Run z; = mg + m1a; + n;, and compute the residuals z; = z; — 19 — 71a;

2. Regress y; on I;
The plim of our multivariate regression coefficient will then be

Cov (yf, ;)

limB -
plimBors Var (71)

Since we are working in plims we can replace the estimated regression coefficients in & with their population
counterparts. This quantity then becomes

Cov (o + faf + €, x; — o — T1a;)

limf3 =
b IBOLS Var (CL'Z —7'('0—7'('10/2')

B BVar (zF) — Bm1Cov (xf, a;)
~ Var (z;) + m3Var (a;) — 2m Cov (4, a;)

Since 77 is a regression coefficient, it is

Cov (xi,a;) Cov(x],a;)
7r1 = =
Var (a;) Var (a;)

SO



BVar (z}) — MCOU(&U a;)

plimBOLS - C’ov(:z: ,a; )Var(a Cov(a: a; )
Var (zf) + Var(v;) + WV&T (a;) — QWOOU (xf, a;)
Cov(z] ,a;
__ BV -8 vér(al))
- Cov(x. ,ai)2

Var (z) + Var(v;) — ~Var(a)

It is a fact that the R? from a univariate regression is equal to the square of the correlation coefficient
between two variables. So

R2 — Cov(z},a;)?
a ™ Var(a;)Var(zy)

We can therefore re-write the plim of our estimator as

BVar (xf) — BR2,Var (x})
Var (x}) + Var(v;) — R2,Var(x})

plimBors =

(1 - Ria) Var (z})
(1-R2,)Var (zF)+ Var (v)

= plimBors = f

Note that this quantity is increasing in R2, — it yields normal attenuation when a and = aren’t related, and
a zero coefficient as a gets close to explaining all of x. This occurs because in our setup, partialling out a is
predicting the signal in x but not the noise. Of course, if we are including a,; because leaving it out would
case omitted variable bias, then it’s not obvious that including it makes things worse; there is a tradeoff
between exacerbating measurement error and eliminating OVB.

1.5 Fixed effects/first differencing

A special case of the “additional controls” scenario is individual fixed effects. Fixed effects can be especially
problematic if there is a high degree of serial correlation in the variable of interest. In this case, removing
individual means will eliminate a large part of the signal. I will do the derivation for first differences, which
is equivalent to fixed effects if there are two time periods.

Suppose the model is
Yir = o+ By + ey
We observe yj;, and
Tip = Xy + Vit

and Cov (z,, €;r) = Cov (z},,vit) = Cov (€;5,v;) = 0 Vt, s , as well as Cov(z},,nit) = Cov(vir, vis) = 0 for
s # t. The first-differenced regression is

Ayl = BAxy + uyy

This regression will give us



s Cov(Azy, Ayjy)

plimBrp = Var (Az)

Cov (Az}, + Avi, BAZE, + Aeyt)
Var (Axf, + Avy)

_ 5. Var (Az3,)
Var (Azx},) +2Var (vi)
Let’s define
p=Corr (x;“t, xz‘tfl)
so that
Cov (zy,x},_) = pVar (z},)
Then
Var (Az}y) = 2Var (23;) — 2Cov (2}, a5, _4)
=2(1-p)Var(z})
So

(1—p)Var(z3)
1—p)Var(zf) + Var (vit)

plimBrp = - (

The attenuation bias in this model is increasing in p, the serial correlation in z*; as p — 1, it approaches
zero. Again, note that it is only strictly “worse” to difference this equation if we don’t need to do it because
of OVB; if OVB is present, OLS will be inconsistent too.

1.6 Mismeasured Controls

Now, suppose our model of interest is
y; = o+ Baf +yw; + ¢
with
Cov(x},¢;) = Cov(w},e) =0

[ is the parameter of interest.

We observe y; and z, but instead of observing the covariate w; we observe
J— *
Wi = Wy + Hi

where



Cov(p;, w}) = Cov(pi, x}) = Cov(;, €;) = 0.

We are worried about omitted variables bias due to w;, so we include w; to “proxy” for this variable. Using
our standard partialling out argument, we have

Cov (yi7 57:)
Var (£;%)

plimBors =
where
ZZ’;‘ = £E;k — g — T W;

Here 7 and 7; are population coefficients from regressing ! on w;. Then

Cov (a+ Bxf +yw! + €, xf — w9 — mw;)
Var (zf —mo — mw;)

plimBors =

_ Cov (Ba} + ywi, x7 — myw;)
 Var (aF) + miVar(w;)

_ BVar (x}) — mpBCov (x},w;) +yCov (x], w}) — m1yCov (W}, w;)
- Var (z}) + m2Var(w;)

8 (Var (xF) — %M) +~yCov (zf,w]) — myCov (w), w;)

- Cov(x;f,wi)Q

Var (z}) + Var(u)

Cov (x},w}) — MVar(w;‘)

Var(w;
:5—’_7 C’o’zs(a:’f) w;)?
Var (1‘:) + W
Var(w;
Cov ('x;,ka wz*) 1- Var((w;))
AN Var(z¥) |14 _Covlaiw)?
v + Var(w;)Var(z})
Var(w;
_ 54 Cov (z¥,w) |1— Var((w;))
N 7 Var(z}) 1+ R2,

So there is still some portion of the omitted variables bias left; how much depends on the reliability ratio for
the covariate w; .
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