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Regression Discontinuity Design

The regression discontinuity (or “RD”) design is a quasi-experimental identification strategy that is used
when treatment is assigned as a function of some observable variable (often called the “running” variable).
We will go through some of the theory of RD, though the basic idea is quite intuitive and the most convincing
RD evidence can be presented in simple graphs.

RD Intuition

In an RD design, we want to know the effect of a treatment 7; on an outcome variable Y;. In the simplest RD
case (called “sharp” RD), the treatment is assigned to all observations beyond some threshold in “running
variable” x;:

Ty =1{z; > c}
Examples of sharp RDs include:

e Union status (DiNardo and Lee)

e Political incumbency (Lee)

What is T' and what is x in each of these examples?

The basic idea of RD is very simple: We look for a discontinuity in the relationship between Y; and x; near
the threshold ¢, and call this the treatment effect. This is easiest to think about in a graph. Intuitively, we
compare observations with x; just below ¢ and those just above c.

RD Theory

Let’s use the potential outcome notation we introduced earlier in the course. Let Yy; and Y;; be random
variables that tell us ¢’s outcome as a function of the treatment 7;. Then

Y, =Y. T; + Yoi(1 - T5)
=Yoi + (Y1 — Yoi) i
= Yoi + BiT;
Now let’s make the following assumption:

E [Yy;|z;] is continuous at z; = ¢



What does this get us? Let’s think about following the RD intuition and comparing observed outcomes for
individuals on each side of the threshold:

lim E[Y;|z;] = lm E[Yy; + 5:Ti|zi]
T;—rC™

T;—>C

= lim E Yy + Bil{z; > ¢}z

T;—C™

= lim E[Yy;|a;]

Tr;—C

Similarly
lim E[Y|z;] = lim E[Yo; + Bil{z; > c} |z
xi—ct x;—ct
= lim E Yy + Bilxi]
x;—ct
= E[Bilwi = ] + lim B [Yo;xi]
SO

lim+E [Yi|z;] — lim E[Y;|a;] = E[Bilz; = (]

T;—rC T;—rCT

That is, comparing limits on each side of the threshold should give us a treatment effect of interest. Using
this method, Lee (2008) shows that the “incumbency effect” in congressional elections is about 40%. The
running variable here is the Democratic vote share in the previous election cycle; at 50%, the Democrats go
from being losers to winners. The outcome is winning today. The incumbency effect appears to be on the
order of 35 percent.
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Computation of RD

From the above discussion, it’s pretty obvious that what matters for RD is getting consistent estimates of
the limits on the right and left sides of the threshold. There are a few ways we can do this.

Method 1: Series Regression

The most straightforward way of computing these limits is to estimate a flexible relationship between Y; and
x;, allowing for a discontinuity at x; = ¢. That is, we can run the regression



K

K
YVi=a+BTi+ Y (zi—of+> Ti-(zi— o) +¢
k=1 k=1

This allows for flexible k-dimensional polynomial fits on each side of the threshold, and the coefficient £
measures the “break” at z; = c¢. One advantage of this method is that the standard errors are easy to get
— we are just running OLS! A disadvantage is that it’s not clear how many polynomial terms we should
include, and it’s often hard to decide (though there are principled ways to do this).

Method 2: Nonparametric Regression

There are now somewhat more sophisticated methods for nonparametrically computing conditional expec-
tations of functions. The simplest of these is a kernel regression:

Bivies = = BT R
h

Here, K is some (usually symmetric) kernel weighting function, and h is a bandwidth. The larger is h, the
more weight is given to observations that are far from a, the point of interest. To estimate the limits for
RD, we could run kernel regressions at z; = ¢ using only data from one side or the other of the boundary.

However, it is now well understood that kernel regressions are badly biased at the boundary of the data.
Since all of the action for RD is at the boundary, this is bad news. Fortunately, an alternative called “local
linear regression” is much better. Here, we run

(

s

) = arg min SO K (552) (¥ — a = Bz — o)
and
EYi|z; =a] =&

In some ways this method is more elegant than series regression. However, there is an obvious problem:
Bandwidth selection. Imbens and Kalyanaraman (2009) derive the optimal bandwidth for minimizing MSE.
Standard errors for this estimator also require a little care.

Generalization: “Fuzzy RD”

Now let’s consider a more general version of the model. Let’s write
Y=o+ 5T,

T; can now be continuous, and treatment is no longer a deterministic function of the threshold. Instead, the
average value of the treatment changes discretely at x; = ¢ (if T; is a dummy, the probability changes). Let’s
assume

1. lim E[T;|x;] # lim+E[TZ~|xi]

T;—rC™ T;—>C
2. FE[a|z;] is continuous at z; = ¢
3. E[B;|x;] is continuous at z; = ¢

4. Given z;, f; is independent of T; near ¢

Now, let’s think about comparing limits again:



lim E[Y;|z;] = lim E[o; + 8;T;|x)

Ti—C™ Ti—C™

= lim F[o;]a;] + lim E[3;T;|z;]

T;—cC Ti—c™

= lim F[o;]z;] + lim E[T;|z;] - lim FE [B;|z;]

xri;—C T;—C— Tr;—C™

= lim F [o;]z;] + lm E[T;|z;] - E[Bi|z; = ¢

Ti—C Ti—cT

Similarly,
lim E[Y;|z;] = lim E [og]z;] + Um E[T;|z;] - E[Bi|z: = ]
x;—ct Ti—cC x;—ct
so
lim E[Yi|z;] — lm E[Y;|z;] = E|[Bi|lzi=c]- < lim E[T;|z;] — lim FE [T,-|x,-])
z;—ct Ti—c x;—ct Ti—cT
and

lim E[Y;|z;] — lim E[Y;|z]

x;—ct o
i i _E 2, —
m BETje] =~ Tm BE[Le]  CPilei=d

T;—ct Tie—

What does this remind you of? This is IV! In fact, fuzzy RD is just IV using the threshold as an instrument
for treatment, controlling flexibly for continuous functions of x;. We can literally run this as IV with series
regression, where we instrument for T; using a dummy for crossing the threshold. Alternatively, we could do
nonparametric regressions to approximate all 4 limits in this formula. One famous example of fuzzy RD is
Angrist’s paper on Maimonides’ rule for class size.

One other note on RD: Like with IV, the assumption that nothing else changes at the threshold is not
testable. However, it is possible to make some arguments. In particular, one can check whether the values
of relevant covariates shift near the threshold. If there is sorting going on, this may detect it.
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