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1 Introduction  

Many of the models we will study this semester are competitive—that is, they assume a 
free market in equilibrium with no distortions. This baseline assumption is an exceedingly 
strong one. There are numerous institutional (or not fully competitive) forces acting on the 
labor market: labor unions, wage mandates, product and labor market regulations, taxes 
and subsidies, and social norms and strictures (as well as market power, though I’m not sure 
if we want to think of monopsony/monopoly as an institution). These institutions can affect 
both prices and quantities in the labor market. In these notes, we’ll consider the impact of 
(some) labor market institutions on the distribution of wages. 

Two institutions that have received considerable attention in the United States are labor 
unions and the federal minimum wage. These institutions and their close relatives are likely 
to be quite important in many countries. This section of the class examines both institutional 
forces. Most of the leading papers on these topics are (unfortunately) exclusively based on 
U.S. data, though that is changing. 

The question we explore is how does the minimum wage and/or unionization affect the 
shape of the wage distribution including: 

• Overall earnings inequality 

• Residual earnings inequality 

• Inequality between observably different demographic groups: 

The economic importance of this set of topics was not fully appreciated prior to the work of 
DiNardo, Fortin and Lemieux (DFL, 1996). A glance at the plots of the distribution of wages 
by gender from their paper—particularly the piling up of women’s’ wages at the minimum 
wage threshold show in Figure 1b—makes the case that the minimum wage must be (or must 
have been) important for the wage distribution, particularly for women. But developing a 
counterfactual is intrinsically difficult. The minimum wage–and similarly labor unions, their 
other major concern–could affect the wage distribution by: 

1. Causing low wage workers to exit the labor force. 

2. Boosting wages of workers who earned below the minimum to the level of the minimum 

3. Inducing wages in the ’uncovered’ sector to either rise or to fall (self-employed workers, 
tipped workers, illegal immigrants) 

4. Causing spillover effects on the wages of workers who are close substitutes to minimum 
wage workers 
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5. Causing spill-overs higher up in the overall wage distribution  

An over-arching problem in this literature is one of developing counterfactual wage densities, 
that is an estimate of the entire distribution of earnings under another minimum wage or 
union regime. There are few experiments to work with here, and, moreover this is a general 
equilibrium problem. So, identification will be tough. A related conceptual problem is 
whether we should to treat the minimum wage or union penetration as an exogenous forces, 
or alternatively as equilibrium outcomes of market forces and political economy. For the 
current discussion, we’ll treat the institutions as exogenous while we try to measure their 
effects on wage outcomes. This is quite imperfect, but it’s the right place to start. 

In this set of lectures, we will study both the substantive topic of how institutions affect 
the wage structure and the methodological topic of how to decompose wage densities. 

2 Decomposing Wage Distributions: The Challenge 

2.1 Kernel density estimation 

To study the shape of wage distributions, we need to plot them. Real world empirical 
distributions are messier than theoretical distribution functions, so we generally need to 
smooth them to work with them. The main tool for smoothing is the kernel density estimator. 
A kernel density estimator is an empirical analog to a probability density function. The exact 
empirical analog of the PDF is simply the conventional histogram. What the kernel density 
estimator adds to the histogram is smoothing. A kernel density estimate of a distribution of 
earnings might be calculated as follows: 

n � � 
φi w − wi

fh(w) = K ,
h h 

i=1  
where the wi are wage observations, the φi...φn are weights with i φi = 1, and K (·) is a 
kernel density function, normally a Gaussian distribution, and h is the chosen bandwidth, 
which is effectively the interval of smoothing around any observation. The kernel estimator 
smooths over nearby neighbors of each observation wi to estimate the density of w at each 
given point. The kernel function (normally) accords greater weight to the nearest neighbors 
of wi and less weight to more distant neighbors.1 

1This information is likely familiar to many economics students in 2015. When DFL wrote their paper, 
these techniques were almost unheard of outside select circles. 
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2.2 An OLS Review2 

Now that we’ve plotted the wage distribution and observed that its shape changes over time, 
we now want to ask what factors explain those changes. That is, we want to decompose 
changes in the wage distribution into their contributory components. This presents both a 
statistical and economic challenge. Let’s start with the statistical challenge. 

Let’s start from the basics: the OLS regression. There are several ways to interpret the 
coefficients from an OLS regression. Those of you who have taken 14.387 know Josh Angrist’s 
favorite: OLS is the best linear approximation of the conditional expectation function. That 
means the coefficient vector β solves the following minimization. 

β = arg min E (E [Yi | Xi] − X nb)
2 

i
b 

Consequently, if we want to estimate the OLS regression 

= X nYi iβ + ti 

we can recover the exact same coefficients β by using E [Yi | Xi] as the dependent variable. 

E [Yi | Xi] = X nβ + tii 

Of course, that’s just one interpretation of OLS. Another is that the coefficients β capture 
the effect of a change in the mean of X on the unconditional mean of Y. This result follows 
from the Law of Iterated Expectations and the CEF result. 

E [Yi] = E {E [Yi | Xi]} 

= E [Xi
nβ + ti] 

= E [Xi
n] β 

Formulated in this way, the coefficients β answer questions like, “If the average level of 
education in the U.S. increased by two years, by how much would average wages change?” 
Note that the derivation above relies on the linearity of the expectation operator; that’s what 
allows us to pull the β vector outside the expectation in the last line. This is an important 
property that will not carry over to quantiles of the wage distribution. 

2These notes draw partly on recitation lecture notes that TA Sally Hudson wrote for 14.662 in spring 2013 
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2.3 Oaxaca decomposition  

The Oaxaca-Blinder (OB) decomposition, independently developed by Oaxaca and Blinder in 
1973, is a canonical tool for separating the influences of quantities and prices on an observed 
mean difference. It’s based on the same principles of OLS: linear expectation functions can 
be used to analyze mean differences. 

For example, if we want to decompose the ’gender gap,’ we can write the wages of males 
and females as: 

¯WM = XM βM	 (1) 

¯WF = XF βF	 (2) 

¯where XM are average demographic characteristics of males (age, education, marital status) 
and βM is a vector of ’returns’ to these characteristics (and similarly for women). 

One can rewrite the gender gap in a variety of ways, including: 

¯WM − WF = ( X̄M − X̄F ) · 
1
(βM + βF ) + (βM − βF ) · 

1
(X̄M + XF ), (3)

2	 2

¯	 ¯WM − WF = ( X̄M − XF )βM + (βM − βF )X̄M + ( X̄F − XM )(βM − βF ), (4) 

¯	 ¯and WM − WF = ( X̄M − XF )βF + (βM − βF )X̄F + ( X̄M − XF )(βM − βF ). (5) 

Each of these decompositions, divides the observed gender wage gap into a component 
due to differences in quantities between the genders (the X ns) and differences in ’returns’ 
between the genders (the βns) and, in the latter two equations, an ’interaction’ term. 

There are three important things to observe about this decomposition: 

1. The Oaxaca technique is useful for decomposing mean differences. It is not applicable 
to decomposing densities or differences between densities as formulated above. 

2. It is a sequential decomposition, meaning that the order of the decomposition (or more 
specifically, the choice of weights) will affect the conclusions. This point is easiest to 
see by drawing a figure of mean wages by gender against education where XM > XF 

and βM > βF . The conclusion about what share of the gap is due to differences in 
mean education and what share is due to differences in returns will depend on which of 
the three decompositions above is applied. There is no ’correct’ answer, and the choice 
is generally not innocuous. 

3. This technique is intrinsically a partial equilibrium approach.	 The implicit question 
the Oaxaca decomposition answers is: what would the gap have been if (a) quantities 
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did not differ between the genders but prices did or (b) prices did not differ but quan­
tities did? These questions implicitly assume that changing the quantity available of 
something (education in this example) has no effect on its price (that is, the βns are 
independent of the X ns). Whether this is a reasonable assumption (or even a useful 
first order approximation) will depend upon the setting. I would argue that for most 
of the applications considered below, this is not a reasonable assumption. 

See also the very nice 2013 AER P&P paper by Patrick Kline, “Oaxaca-Blinder as a Reweight­
ing Estimator,” which shows that OB estimator of counterfactual means can be understood 
as a propensity score reweighting estimator based upon a linear model for the conditional 
odds of being treated. It’s impressive that four decades after OB was introduced and fully 
assimilated into the standard empirical toolkit, Kline found something genuinely novel to say 
about it! 

2.4 Conditional Quantile Regression Estimation 

One natural workaround for wage density decomposition that does not work is conditional 
quantile regression. Quantile regression methods were developed to answer questions about 
effects of covariates on other features of the outcome distribution aside from the mean. As 
in OLS, quantile regression coefficients can be modeled as a linear approximation to the 
conditional quantile function. If we let τ ∈ (0, 1) denote the τ th quantile of the distribution 
of log wages given the vector of covariates, then the linear model is 

Qτ (Yi | Xi) = X nβτ + tii

Note that we estimate a separate coefficient vector βτ for each quantile τ . This vector solves 

βτ = arg min E {ρτ (Yi − X nb)}i
b 

where  
τ (Yi − Xi

nb) for Yi − Xi
nβ ≥ 0 

ρτ (Yi − Xi
nb) =

(1 − τ) (Yi − Xi
nb) for Y − Xi

nβ < 0 

The function ρτ is referred to as the “check function” because the weights will be shaped 
like a check with the inflection point at Yi − Xi

nβ = 0. (More on this below). Note another 
key difference between the OLS and CQR minimands: the CQR minimand averages absolute 
deviations rather than squared deviations. That’s why it delivers an estimate that’s not 
sensitive to outliers. You don’t reduce the minimand by moving β̂τ towards the extremes 
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because you pay with deviations from the opposite end. 
Please also be clear about the correct interpretation of βτ . Let’s say that X is a dummy 

variable indicating college versus high-school attendance and the outcome variable is earnings. 
You estimate a quantile regression for β0.5. The correct interpretation of β̂0.5 is generally not 
that it is the effect of college attendance on the median wage earner. Rather, it is the effect 
of college attendance on the median of the wage distribution. The former interpretation 
requires an additional rank invariance assumption: that the 50th percentile college earner 
would also have been the 50th percentile high school earner, so that the treatment (college) 
preserve rank orderings. This is a very strong and generally untestable assumption. 

Unlike the conditional expectation function, the conditional quantile function is not a 
linear operator. That means that Qτ (Yi|Xi) = X nβτ does not imply that Qτ (Yi) = Qτ (Xi)

nβτ .i

Consequently, we can’t use CQR to answer questions like, “What is the effect of sending more 
women to college on the 10th percentile of the wage distribution?” Instead, CQR estimates 
the effect of the college education on the 10th percentile of the wage distribution for a given 
set of covariates – e.g. young women. That’s unfortunate because we typically care about 
how an economic variable affects the distribution of wages, not the distribution of wages 
conditional on X. Thus, if the objective is wage density decomposition, the CQR is not the 
most straightforward place to start. 

3 DiNardo, Fortin and Lemieux (1996): Labor Market Institutions and the 
Distribution of Wages 

DFL’s 1996 paper proposed a generalization of the OB decomposition that is suited to esti­
mating the impact of economic factors on the shape of the wage distributions. any alterna­
tives have been proposed since their 1996 paper, including the approach developed in Firpo, 
Fortin and Lemieux’s 2011 Econometrica paper (and see also their 2013 Handbook of Labor 
Economics chapter on wage density decompositions). The 1996 paper arguably offers the 
most straightforward, transparent, and economically lucid attack on the problem. 

As above, the Oaxaca decomposition was developed to analyze counterfactual differences 
in mean earnings. DFL’s paper is about estimating and analyzing counterfactual earnings 
distributions. Their technique, a generalization of the Oaxaca distribution, does exactly this. 
The DFL paper has been influential for three reasons: 

1. It first called attention to the possible importance of the minimum wage for the shape 
of the earnings distribution. 

2. It is methodologically elegant, and the methodology can be applied in other settings. 
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3. The methodology also gets ’extra credit’ for cleverness.	 (It’s nearly impossible to 
overstate the value that economists ascribe to cleverness. Like most obsessions, this 
one is not altogether healthy.) 

3.1 Conceptualization 

•	 DFL view each wage observation in a given distribution as a vector composed of the 
wage itself, a set of individual attributes, z, and a time subscript tw. Thus, they write 
wi ≡ (wi, z, t). 

•	 They express the observed distribution of wages at time ft(w) as a joint distribution of 
wages and attributes conditional on time f(w, z|tw; mt), integrated over the distribu­
tion of individual attributes F (z|tz) at date tz. Under this notation, mt refers to the 
minimum wage prevailing at time t. 

•	 Putting these pieces together, DFL write the joint distribution of wages and attributes, 
conditioning on time t as: 

ˆ
ft(w) = dF (w, z|tw,z = t; mt). (6) 

z∈Ωz 

This expression describes the marginal density of wages at t by integrating out the 
distribution of attributes z, and conditioning on the time period and minimum wage 
level. Note that Ωz is the domain of individual attributes and t for purposes of their 
paper will correspond to one of two points in time, 1979 and 1988. 

•	 Rewriting (6) and applying the law of iterated expectations gives: 
ˆ

ft(w) = f(w|z, tw = t; mt)dF (z|tz = t) ≡ f(w; tw = t, tz = t, mt). 
z∈Ωz 

•	 Here, the distribution of w is expressed conditional on z and the distribution of z is 
expressed conditional on t. Iterating expectations allows us to condition on additional 
variables such as z and then integrate them out again. Nothing is gained (so far) from 
this, but the value of conditioning will be apparent in a moment. 

•	 Attending to notation here is important. f(w; tw = 88, tz = 88,m88) refers to the 
observed distribution of wages in 1988, that is the wage distribution conditional on the 
distribution of zns prevailing in 1988, the level of the minimum wage in 1988, and the 
prices associated with characteristics z in 1988 (tw = 88 refers to the price level). Thus, 
DFL are conceptualizing the wage distribution as being composed of three primitives: 
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1. The level of the minimum wage, mt. This is the institution parameter. 

2. The distribution of worker attributes, tz. This is the quantity matrix. 

3. The conditional wage distribution for given attributes, tw. This is the price func­
tion, and it is quite central. The price function is in effect a distribution function 
that “links” zns to wages. This function is the conditional distribution of wages 
for each unique entry in the z matrix. Integrating the price function over the 
distribution of zns (the quantity matrix) produces the observed wage distribution 
(ignoring for a moment mt). 

•	 Using this notation, the expression f(w; tw = 88, tz = 79,m88) refers to the counter-
factual distribution of wages in 1988 with the distribution of zns at its 1979 level, but 
prices and minimum wages at their 1988 levels. 

•	 Under the strong assumption that the 1988 structure of wages does not depend on the 
distribution of zns, the hypothetical density f(w; tw = 88, tz = 79,m88) can be written 
as 

ˆ
f(w; tw = 88, tz = 79,m88) = f(w|z, tw = 88; m88)dF (z|tz = 79) 

ˆ
= f(w|z, tw = 88; m88)ψz(z)dF (z|tz = 88), (7) 

where the ’reweighting’ function ψz(z) maps the 1979 distribution of zns into the 1988 
distribution. 

•	 The reweighting function is defined as 

dF (z|tz = 79) 
ψz(z) = .	 (8)

dF (z|tz = 88) 

•	 This expression is simply the ratio of probability mass at each point z in the year 1979 
relative to 1988. Hence, ψz(z) reweights the 1988 density so that observations that 
were relatively more likely in 1979 than 1988 are weighted up and observations that 
are relatively less likely are weighted down. 

•	 Notice that this reweighting is non-parametric (so far); we are not specifying the func­
tion that maps zns into wns. We are simply reweighting the observed joint density of 
zns and wns. 
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3.2 The clever part  

•	 As a conceptual matter, ψz(z) is straightforward to implement. As an empirical matter, 
it is not. 

•	 Notice that ψz(z) = dF (z|tz = 79)/dF (z|tz = 88) is a high dimensional object to 
estimate because z exists in Rk where k is the number of items in the vector of charac­
teristics (e.g., age, gender, education, race, union status, etc.). 

•	 So, estimating ψz in (8) would be fraught with imprecision; in finite data, there will 
likely be probability mass zero in the numerator or denominator for some values of z. 
DFL solve this implementation problem by a savvy application of Bayes rule. 

•	 A quick reminder on Bayes’ rule: 

Pr(B|A) · Pr(A)
Pr(A|B) = .	 (9)

Pr(B|Zi) · Pr(Zi)i 

•	 Bayes’ rule calculates the posterior probability of event A given an observation of B 
and prior knowledge of the joint distribution of B and other events Z (one of which 
is A). Intuitively, we are given some event B and we want to know give how likely it 
is that some other event A occurred given B. The answer is simply the ratio of the 
probability of the joint occurrence of A and B to the total occurrences of B, which is 
the expression above. 

•	 Applying this method to the DFL problem, we get: 

Pr(z|tz = 79) = ´Pr(tz = 79|z) · dF (z) 
, (10) 

z Pr(tz = 79|z) · dF (z)

and 
Pr(z|tz = 88) = ´Pr(tz = 88|z) · dF (z) 

. (11)
Pr(tz = 88|z) · dF (z)

z 

Hence, 
Pr(tz = 79|z) Pr(tz = 88) 

ψz = · .	 (12)
Pr(tz = 88|z) Pr(tz = 79) 

•	 Unlike (8), equation (12) can be readily estimated. There are three steps: 

1. Pool data from both years of the sample, 1979 and 1988. 

2. Estimate a probit model for 

Pr(tz = t|z) = Pr(ε > −βH(z)) = 1 − Φ(−βH(z)), 
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�which is simply the likelihood that an observation is from year t given z.  

3. Use estimates of 1 − Φ(−βH(z)) to form ψz for each observation. 

•	 The subtlety here is that DFL are conceptualizing time as part of the state space. 

•	 By estimating time as a function of the zns (i.e., whether a given observation i is from 
1988 or 1979 based on its zns), DFL use Bayes’ rule to invert the high dimensional 
problem in (6) into a unidimensional problem. 

•	 By the way, this reweighting transformation using the probit model is parametric (that 
is, the probit model assumes a functional form). The entire DFL method is therefore 
called ’semi-parametric’ because of the parametric reweighting approach. 

•	 Of course, one can always make a ’non-parametric’ by using a flexible functional form 
and ’promising’ to make it more flexible if more data were to arrive. 

•	 As you have observed, there is an important underlying assumption that DFL under­
score in the text: 

“Calling the counterfactual density f(w; tw = 88, tz = 79,m88) the ’density that 
would have prevailed if individual attributes had remained at their 1979 level’ 
is a misuse of language. This density should rather be called the “density that 
would have prevailed if individual attributes had remained at their 1979 level and 
workers had been paid according to the wage schedule observed in 1988,” since 
we ignore the impact of changes in the distribution of z on the structure of wages 
in general equilibrium.” 

•	 Hence, the DFL approach is the exact analog of the Oaxaca approach. It holds prices at 
their 1988 levels while imposing the 1979 distribution of quantities to simulate a coun­
terfactual wage distribution. This allows DFL to account for the impact of changing 
zns and changing tz in their decomposition. 

3.3 Accounting for unionization and minimum wages 

In the case of unionization and minimum wages, there is not a natural analogy to the Oaxaca 
approach. These outcomes are not (wholly) individual characteristics that are ’priced’ by the 
market. Rather they potentially spillover across the distribution. 

To incorporate them into the framework, DFL take different approaches for these two 
factors. They treat unionization as a wholly individual trait. Conversely, they treat the 
minimum wage as a distributional characteristic. 
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Unions 

To treat unionization as an individual characteristic, the following assumptions are needed: 

1. There is no non-random selection of union status by ability.	 Hence, the observed union 
wage effect from a cross-sectional regression corresponds to the true causal effect. 

2. There are no general equilibrium impacts of unionization on the wage distribution for 
non-members–union-threat effects, employment effects, spillover effects. 

These assumptions allow DFL to “Estimate the density of wages that would have prevailed 
if unionization had remained at its 1979 level and workers were paid according to the union 
and non-union wage schedules observed in 1988 [or 1979].” In short, unionization is simply 
treated as a z variable. 

Minimum wages 

The assumptions required to form a counterfactual minimum wage estimate are (even) more 
stringent: 

1. Minimum wages have no spillover effects on the distribution of wages above the mini­

mum. This is a conservative assumption since any spillover effects (which are plausible 
slightly higher in the distribution) would augment the impact of the minimum wage. 

2. The shape of the conditional density of wages at or below the minimum depends only 
upon the real minimum. 

3. The minimum	 wage has no impact on employment probabilities, hence there is no 
need to develop counterfactual wage densities for workers who lose employment due to 
imposition of a binding minimum. This assumption is also conservative since removal 
of low wage observations from the distribution (due to job loss) would tend to further 
decrease inequality. 

These assumption allow DFL to ’graft’ the lower tail of the earnings distribution below the 
minimum wage (e.g., from 1979) directly onto another era’s wage distribution (e.g., 1989) 
when imposing the counterfactual minimum wage. This is not entirely satisfactory, but it is 
difficult to improve upon in this setting. The net results are visible in DFL Figure 3. Note 
that the apparent spill-overs just to the right of the minimum wage in the counterfactual 
density (Panel C) are an artifact of the kernel density estimator which smooths over the 
discontinuity. 
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3.3.1 Accounting for supply and demand 

Supply and demand is notably absent from the analysis so far. DFL do the following: 

•	 Create 32 education-experience-gender cells nj 

•	 Calculate changes in log relative supply in each Δnj 

•	 Estimate changes in log relative demand within each cell Δdj using a ’fixed coefficients 
manpower requirements index reflecting between sector shifts in relative labor demand’ 
(this is essentially an industry shift measure). 

•	 Calculate the implied changes in wages Δwj in each cell based assuming that σ = 1.7. 
(Note that the CES form implies that the elasticity of substitution among all cells is 
equal to σ. We will discuss the CES model at greater length in the weeks immediately 
ahead.) 

Hence, in DFL’s notation: 

f(w|z, tw=88; m88; d79; n79) = f(w − Δwj |z, tw=88; m88; d88; n88). (13) 

•	 DFL is the only paper in this entire wage-density decomposition literature that takes 
supply and demand seriously. This is much to the paper’s credit. Subsequent authors— 
including these same authors at later dates—have apparently concluded that supply 
and demand do not need to be taken into account when constructing counterfactual 
wage structures. Even to a reduced form empiricist, that conclusion might seem a bit 
startling. 

3.4 Results 

The easiest way to see the results of the DFL analysis is to study Figures 6 and 7. Rather 
than giving the actual and counterfactual PDFs, these figures plot the differences between 
the 1979 and 1988 densities (note: the integral of each figure must therefore be zero). The 
successive panels of the figure show the remaining differences in densities after applying each 
of the counterfactual calculations: the minimum wage, unionization, individual attributes, 
and supply and demand. If the final density difference was completely flat and lay on the 
x-axis, it would indicate that the model explained all observed changes in wage distributions. 

Three observations: 

•	 After applying these counterfactuals, much growth in inequality remains, particularly 
in the upper tail of the distribution (this is seen by the extra mass above the x-axis at 
the right hand tail and the missing mass in the middle). 
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•	 The exercise appears to have much more explanatory power for earnings inequality 
among women than men. This is not surprising because the minimum wage had been 
much more binding for women who compose a disproportionate share of the lower tail 
of the wage distribution. 

•	 Because the decomposition is ’sequential,’ the choice of the ordering of factors is not 
innocuous. For example, by placing supply and demand last in the decomposition, DFL 
give it less weight. By comparing Tables III and V of their paper, you can see that 
the importance of some factors more than doubles if their contributions are calculated 
first rather than last. As above, no sequence is ’correct.’ DFL’s choice of sequence is 
probably not accidental. 

Some key results of DFL for Males: 
Measure Change MinWg Unions X’s S&D Unexplained 

MinWg 1st 90-10 0.195 25.3% 10.7% 20.7% 20.7% 22.6% 
S&D 1st 16.0% 24.1% 4.8% 32.6% 

MinWg 1st 50-10 0.076 65.7% -25.6% 49.7% 10.9% -0.7% 
S&D 1st 43.5% -5.5% 26.9% 33.9% 

Key results of DFL for females: 
Measure Change MinWg Unions X’s S&D Unexplained 

MinWg 1st 90-10 0.328 45.1% 1.3% 25.6% 11.1% 16.9% 
S&D 1st 41.6% 0% 14.6% 26.8% 

MinWg 1st 50-10 0.243 61.7% -4.1% 32.1% -4.5% 14.8% 
S&D 1st 56.5% -3.0% 18.7% 13.0% 

A fair reading of these results suggests three conclusions: 

•	 The decline in the U.S. minimum wage has probably been quite important to the growth 
of earnings inequality in the lower tail of the distribution for females. 

•	 The impacts of minimum wages on male earnings inequality are less significant, though 
not trivial at the bottom of the distribution. 

•	 For males, supply and demand are likely to have been quite important to the growth 
of earnings inequality. 
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How convincing is this analysis? Many would criticize this approach for applying a partial 
equilibrium analysis to a general equilibrium problem. In addition, an open question for 
this type of analysis is the conceptual problem of how economists should view the exogene­
ity/endogeneity of labor market institutions. (The DFL approach takes them as exogenous.) 

Despite these limitations—and all papers have some—the DFL approach was original, 
insightful and productive in causing economists to take the minimum wage more seriously 
as an explanation for rising wage inequality. Several years later, David Lee’s (1999) paper 
offered a potentially more compelling empirical case for its importance. We won’t have time 
to discuss Lee’s paper in class, but you may find it instructive to read. In that case, you might 
also read the working paper by Autor, Manning and Smith (2010) which offers something of 
a critique and reanalysis of Lee. 

4 Decomposing wage densities: Some techniques and results 

The DiNardo, Fortin and Lemieux 1996 paper presents one clever approach to decomposing 
wage densities. But there are a number of alternatives. I’ll review them here, but I won’t 
spend class time on them. 

4.1 The Juhn, Murphy and Pierce (1993) decomposition 

JMP’s highly cited 1993 paper set out to summarize the rising dispersion of earnings in 
the U.S. during the 1970s and 1980s. JMP wanted a tool for describing the components of 
wage density changes that could be attributed to measured prices, measured quantities and 
residuals (which they referred to as unmeasured prices and quantities). Figure 1 of their 
paper reminds you of the dramatic wage structure changes that motivate their work. 

The technique that JMP developed, the “full distribution accounting method” features 
both good ideas and important limitations. This technique has been widely applied since the 
publication of their paper and so is worth spending a few minutes on. 

The wage equation in time t can be written as: 

Yit = Xitβt + uit. (14) 

Write uit as, 
uit = F −1 (θit|Xit) . (15) 

where F −1 (·|Xit) is the inverse cumulative distribution of wage residuals conditional on Xit, 
and θit is ins percentile rank in the residual distribution. Notice that both θit and F (·|Xit) 
will depend upon the conditioning variables X. 
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In this framework, changes in inequality over time come from three sources: (1) changes 
in the distribution of observable individual characteristics, X, (2) changes in the returns to 
those observable characteristics, β; and (3) changes in the distribution of residuals F (θ|X). 

¯	 ¯If we define β as the average price of observables over some time interval and F (·|Xit) as 
the average cumulative distribution of residuals, then we can write the difference in inequality 
between the current period and the ’average’ periods as: 

   	  
¯	 ¯ F −1 ¯Yit = Xitβ + Xit βt − β̄ + F −1 (θit|Xit) + t (θit|Xit) − F −1 (θit|Xit) . (16) 

This equation potentially allows us to simulate counterfactual distributions by varying 
prices, quantities or the residual distribution. 

For example, if we wanted to calculate the counterfactual distribution of wages holding 
fixed observable prices and the residual distribution at their averages and varying only the 
distribution of X ns, we could calculate: 

¯ ¯Yit (1) = Xitβ + F −1 (θit|Xit) .	 (17) 

If we want to allow observable quantities and prices to vary with time, we can write: 

¯Yit (2) = Xitβt + F −1 (θit|Xit) .	 (18) 

Finally, if we want to allow quantities, observable prices and unobservables to move simulta­

neously, we end up with: 

Yit (3) = Xitβt + F −1 (θit|Xit) = Yit.	 (19) 

Using this accounting scheme, JMP propose the following decomposition: 

1.	 Yit (1) − Ȳi is the component of the difference in inequality between t and the average 
period due to changing quantities.   

2.	 Yit (2) − Yit (1) − Ȳi is the marginal contribution of changing prices.. 

3. Yit (3) − Yit (2) is the marginal contribution of changing residuals. 

Notice that 

      
[Yit (3) − Yit (2)] + Yit (2) − Yit (1) − Ȳi + Yit (1) − Ȳi = Yit (3) = Yit (20) 

so adding the pieces together recovers the actual distribution of wages in period t. This is of  
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course an identity. 
More specifically, JMP perform their estimation in there steps: 

1. To obtain the effect of quantities only, JMP predict wages for all workers in the sample 
¯in year t using the average coefficient vector β, and computing a residual for each 

worker based on his rank in year tns residual wage distribution and applying the average 
cumulative residual distribution over the full sample. 

2. To obtain the marginal effect of quantities, they repeat this procedure, now using the 
coefficient vector βt but retaining the average residual distribution. 

3. Finally, the third component is simply calculated as the difference between the actual 
wage distribution in year t and the counterfactual in step (2). Thus, notice that the 
residual component is itself calculated as a residual. As discussed below, this reflects a 
shortcoming of the procedure: the subcomponents don’t necessarily add to the whole 
(despite equation (20)). 

Like the Oaxaca-Blinder and DFL’s decompositions, the JMP decomposition is sequential. 
Depending on the order of the decomposition, one will generally attribute different shares to 
quantities, prices, and residuals. For example, Goldin and Margo (1992 QJE) find that the 
sequence of the decomposition is substantively important for decomposing the components 
of changing inequality in the 1940s. 

A key virtue of the JMP decomposition is that can be applied to any wage quantity (i.e., 
the 10th , 50th, or 90th) percentile. Hence, like DFL – and unlike Oaxaca-Blinder – the JMP 
decomposition can ostensibly be used to simulate entire counterfactual distributions. 

An interesting conceptual/rhetorical point here is that JMP are purportedly decomposing 
the residual into two pieces: a ’location’ parameter and a ’scale’ parameter – that is, a 
residual rank, and corresponding residual wage. This is clever but is only strictly correct 
under unappealing assumptions, specifically that residuals are exclusively accounted for by 
unmeasured prices and quantities, rather than measurement error and luck, and moreover, 
that a person’s rank in the residual distribution is invariant to the set of conditioning X ns. 
Without this strong ’single index’ interpretation of the wage residual, a person’s rank in the 
residual distribution, θit, is not necessarily indicative of their ’unmeasured quantity of skill’ 
(with F −1 (θit|Xit) giving its price). 

The JMP methodology has two main shortcomings. The first is that the OLS wage 
regression at the heart of the JMP technique provides a model for the conditional mean 
of the wage distribution and its results do not extend naturally to wage quantiles. For 
example, there is no presumption that Ft (50) = 0, and so it need not be the case that 
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X̄ n X̄ nȳt = tβt + Ft (50). However, it will be the case that ȳt = tβt + E [Ft (·)] . So, in practice, 
this inconsistency may not be substantively important (though it’s certainly inelegant). 

A more significant shortcoming is that the components of the JMP counterfactual de­
composition need not sum to the total observed change. Specifically, adjusting the wage 
distribution in period t for the change in each of the three accounting components (prices, 
quantities, residuals) between periods t and τ will not generally recover the observed wage dis­
tribution in period τ . The reason is that knowledge of the marginal distributions of X nβ and 
F (θ) is not generally sufficient to characterize the marginal distribution of w = X nβ +F (θ). 
Since X nβ and F (θ) are random variables, the distribution of their sum g (w = X nβ + F (θ)), 
depends on both their variances and covariance (i.e., their joint distribution). This covariance 
is not accounted for by the JMP decomposition unless F (θ) is allowed to depend explicitly 
on X. 

Does it? In the paper, JMP denote Ft 
−1 (θ) as depending explicitly on X (e.g., F −1 (θ|X) 

). But, as noted by Lemieux 2002, it is unclear how the dependency of the residual distri­
bution on X is implemented in practice. Because X contains continuous covariates, there 
are essentially an unlimited number of conditional distributions of the residual. In most sub­
sequent implementations of the JMP decomposition (see especially Blau and Khan, 1994), 
researchers have used an unconditional residual distribution, Ft 

−1 (θ). 
There is one special case, however, where the marginal distribution of w is recoverable 

from the marginal distributions of X nβ and F (θ). This is when these marginal distributions 
are independent. Under classical OLS assumptions—in particular, a normally distributed, 
homoskedastic error term—this independence condition will hold. But this is extremely 
restrictive. In practice, residual wage dispersion does appear to vary significantly with edu­
cation and experience, a point made forcefully by Lemieux’s 2006 AER P&P paper. 

The key results of the JMP decomposition are found in Table 4 of the paper. For the 
period of immediate interest in their paper, 1979 - 1988: 

1. About 40 percent of the growth of 90/10 inequality occurs above the median (90/50) 
and 60 percent below the median (50/10). 

2. Changes in quantities (X ns) play almost no role in the growth of inequality. 

3. But changes in prices do. Observed prices play an equally large role above and below 
the median, and account for about 55 percent of the total growth in inequality. 

4. The residual (’unobserved quantities and prices’) accounts for the other 45 percent. Of 
that component, 75 percent of the growth in the residual is found below the median. 
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Another interesting finding is that while the ’observed price’ components do not contribute 
to rising inequality until the 1980s, residual inequality starts to rise sharply in the 1970s 
(see Figure 7). But, as has been later demonstrated by other researchers, this difference in 
the timing of residual versus between-group inequality is not present in all data sets. The 
CPS May/ORG data do not show strong growth in residual inequality until the 1980s. The 
CPS March data, which JMP use, do. It also appears from subsequent analysis that JMP 
overstate the magnitude of the rise in residual inequality in the March during the 1970s. 

The uncertainty about the basic facts surrounding the timing of residual inequality has 
generated significant controversy in the U.S. inequality literature. Some see the purported 
rise in residual inequality in the 1970s as evidence of some form of SBTC in this decade. 
Those who believe that residual inequality started rising in the 1980s, coincident with the 
rise in between-group inequality, tend to believe that all of the rise in inequality is due to a 
single phenomenon. This controversy remains active. I will not devote class time to it. 

4.2 Comparison of JMP and DFL 

The JMP tool does two things that DFL does not do: 
First, JMP explicitly models the role of ’residual prices and quantities.’ In contrast, DFL’s 

wage density technique does not distinguish between between-group and residual prices. 
However, Lemieux 2006 in the AER proposes a simple extension whereby the DFL technique 
is applied to the residual wage distribution (estimated using an OLS model) after the between 
group effects have been purged via OLS. 

Alongside these virtues, the JMP approach has two weaknesses. First, it does not ’add 
up’ – the sum of components need not equal the total change. And moreover, JMP is 
conceptually not very clean because it uses an OLS regression, a model of the conditional 
mean, to do quantile analysis. (The DFL model is also a strange hybrid of parametric 
and non-parametric tools, i.e.., the logit or probit reweighting equation married to the non-
parametric wage distribution). And this conceptual flaw is exacerbated if one additionally 
uses OLS regressions to generate the wage residuals for the DFL residual reweighting (as 
proposed by Lemieux 2006). 

It would be desirable to have a unified model that features the strengths of JMP (explicit 
decomposition of wage distribution into quantities, between-group prices and residuals) and 
the strengths of DFL (adds up; conceptually almost-kosher). One such approach is described 
below. 
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5 Wage density decomposition: A quantile regression approach  

We’ll now consider an approach to wage density decomposition based on quantile regressions. 
This approach was proposed by Machado and Mata (Journal of Applied Econometrics, 2005) 
and slightly extended by Autor, Katz and Kearney (2005, NBER Working Paper). 

5.1 Quantile regression basics 

Let Qθ (w|X) for θ ∈ (0, 1) denote the θth quantile of the distribution of the log wage given 
the vector of covariates. We model these conditional quantiles as 

Qθ (w|X) = X nβ (θ) , (21) 

where X is a k ×1 vector of covariates and β (θ) is a conformable vector of quantile regression 
(QR) coefficients. For given θ ∈ (0, 1) , β (θ) can be estimated by minimizing in β, 

n 

n −1 ρθ (wi − Xi
nβ) (22) 

1=1 

with 
θµ for µ ≥ 0 

ρθ (µ) = . (23)
(θ − 1) µ for µ < 0 

The latter expression is referred to as the “check function” because the weight applied to µ 
will be shaped like a ’check’ with the inflection point at wi − Xi

nβ = 0. Check Function for 
θ = 0.25: 

!

0! U+!U%!
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This expression often looks mysterious at first, but it is simple to demonstrate to your­
self that it works. For example, consider the sequence [0, 11, 23, 27, 40, 50, 60]. What’s the 
median? By inspection, it’s 27. Now, plug in above. Note that there are no X ns here, we are 
just estimating the constant in expression (22). So, we have: 

1 −.5 [(0 − 27) + (11 − 27) + (23 − 27) + (27 − 27)] 
z = · 

7 +.5 [(40 − 27) + (50 − 27) + (60 − 27)] 
1 1 

= · [−.5 (−27 − 16 − 4) + .5 (13 + 23 + 33)] = · 58 
7 7 

Try adjusting β̂ upward or downward from 27. You will quickly discover that you cannot 
do better than β̂ = 27. (Easiest to use a spreadsheet and replace the if...then expression in 
equation (23) with the absolute value operator, though this only works for the median.) 

Now, try something counterintuitive. Add a second zero to the bottom of the sequence 
and a very large positive number to the top of the sequence (say 10, 000). Intuition might 

ˆsuggest that this would increase β to > 27. But that is not the case. Because you are 
minimizing the sum of absolute deviations ρθ (wi − Xi

nβ), you do not gain by moving β̂
towards the extremes; you pay with deviations from the opposite end. 

Beyond understanding the linear programming problem, you should be pictorially clear 
on what a quantile regression is estimating, as well as the correct interpretation of β (θ). 
For example, let’s say that X is a dummy variable indicating college versus high-school 
attendance and the outcome variable is earnings. You estimate a quantile regression for 
β (50). The correct interpretation of β̂ (θ) is generally not the effect of college attendance 
on the 50th percentile wage earner. Rather, it is the effect of college attendance on the 
50th percentile of the wage distribution. The former interpretation requires an additional 
’rank invariance’ assumption: the 50th percentile college earner would also have been the 
50th percentile high school earner (i.e., the treatment preserves rank orderings). This is a 
very strong and generally untestable assumption (notably, it is an assumption in the JMP 
decomposition). Many users of quantile regressions mistakenly interpret their results using 
an implicit rank invariance assumption. 

5.2 A quantile model of wage inequality: Estimation for given X 

As discussed by Machado and Mata, if equation (21) is correctly specified, the conditional 
quantile process—that is, Qθ (w|X) as a function of θ ∈ (0, 1)—provides a full character­
ization of the conditional distribution of wages given X. Realizations of wi given Xi can 
be viewed as independent draws from the function Xi

nβ (θ) where the random variable θ is 
uniformly distributed on the open interval θ ∈ (0, 1). 
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Let us say we have accurately fit the conditional quantile function Qθ (w|X) at a suffi­

ciently large number of points θ. We can use the estimated parameters β̂ (θ) to simulate the 
conditional distribution of w given X. Here, we use the Probability Integral Transformation: 
If U is a uniform random variable on [0, 1], then F −1 (U) has the density F (·). Thus, if 
θ1, θ2...θj are drawn from a uniform (0, 1) distribution, the corresponding j estimates of the 
conditional quantiles of wages at X, ŵ ≡ {X nβ (θi)}ji=1, constitute a random sample from 
the (estimated) conditional distribution of wages given X. 

This simulation procedure characterizes the conditional quantiles of the w for given X. 
It does not provide the marginal density of w. This is because the marginal density depends 

ˆupon both the conditional quantile function, β (θ), and the distribution of the covariates 
g (X). (For simplicity, we will treat g (X) as known rather than estimated). 

Getting the model right may also be important. The conditional quantile model will 
hold exactly in a case where both location and scale depend linearly on the covariates (for 
example in the classical location shift model where w = Xi 

nβ + ε and ε is a normal, iid 
error term). In more general cases, the conditional quantile model may provide a reasonable 
approximation to the true conditional quantile, and this approximation can generally be 
improved by specifying flexible functions of X when estimating β (θ). 

5.3 Estimating the marginal density of w using the quantile model 

To generate a random sample from marginal density of w, we can draw rows of data Xi 

from g (X) and, for each row, draw a random θj from the uniform (0, 1) distribution. We 
then form ŵi = Xi 

nβ̂ (θj ), which is a draw from the wage density implied by the model. 
By repeating this procedure, we can draw an arbitrarily large random sample from the 
desired distribution. This procedure – successively drawing from g (X) and θ to form ŵi – is 

ˆequivalent to numerically integrating the estimated conditional quantile function Qθ (w|X) 
over the distribution of X and to θ form 

ˆ ˆ
ˆf (ŵ) = Qθ (w|X) dXdθ 

X,θ 

This decomposition has two useful properties. First, the conditional quantile model par­
titions the observed wage distribution into ’price’ and ’quantity’ components. [But it is 
worthwhile to ask what these ’prices’ mean.] This is similar to a standard Oaxaca-Blinder 
procedure using OLS regression coefficients, with the key difference that the OLS model only 
characterizes the central tendency of the data (i.e., the conditional mean function, describing 
’between-group’ inequality). By contrast, the conditional quantile model characterizes both 
the central tendency of the data (in this case, the median) and the dispersion of the outcome 
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variable conditional on X, i.e., the wage ’residuals.’ This feature is critical for estimating the 
impact of composition on the shape of the residual wage distribution. 

Second, under the standard—but unappealing—wage decomposition assumption that ag­
gregate skill supplies do not affect aggregate skill prices, we can use the conditional quantile 
model to simulate the impact of changing composition or prices on distribution of wages. In 
particular, by applying the labor force composition data gt (X) from a given time period to 
the price matrix β̂τ (X) from any other time period τ , we can simulate the counterfactual 
distribution of wages that would prevail if labor force composition were given as in time pe­
riod t and labor market prices were given as in time period τ . Note that because the β̂τ (X) 
matrix describes the conditional distribution of wages for given values of X, this simulation 
captures the effects of composition on both between-group and residual inequality. 

5.4 Extension to residual inequality 

While Machado-Mata do not extend their approach to estimating counterfactual measures 
of residual inequality, this extension is straightforward (Autor, Katz, Kearney’s 2005 NBER 
Paper make this extension, as does Melly 2005). 

Define the coefficient vector β̂ (50) as the measure of ’between-group’ inequality, denoted 
as β̂b ≡ β̂ (50). β̂b serves a role akin to β̂OLS in a conventional Oaxaca-Blinder decomposi­

tion. In the standard application, β̂OLS provides a measure of between-group inequality; it 
estimates the central tendency of the data conditional on X. In the quantile application, the 
central tendency measure is the conditional median, estimated by β̂b . 

Following this logic, define a measure of within-group inequality as the difference between 
the estimated coefficient vector β̂ (θ) and the median coefficient vector β̂b: 

β̂w (θ) ≡ β̂ (θ) − β̂b for θ ∈ (0, 1) . (24) 

ˆBy construction, βw (50) = 0. Hence, the residual quantile coefficient matrix is purged of 
’between-group’ inequality, and measures the expected dispersion of w at any given value of 
X, holding the conditional median at zero. By applying the coefficient matrix β̂w (θ) to the 
distribution of covariates, g (X), one can calculate the (estimated) dispersion of w that is 
exclusively attributable to residual inequality. If, for example, β̂ (θ) = β̂b ∀ θ, then residual 
inequality is zero in this model. 

To summarize, the (correctly specified) conditional quantile model provides a complete 
characterization of the distribution of w as a function of three components: the distribution 
of covariates, g (X), the vector of between-group prices, β̂b, and the matrix of within-group 
(residual) prices β̂w . We write ft (ŵt) ≡ f gt (X) , β̂tb , β̂t

w 
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5.5 Implementation 

This procedure is implemented in three steps. 

1. Estimate	 quantile coefficient vectors for each time period. For example, AKK use 
the May/MORG March samples to estimate a standard Mincer wage model fit using 
quantile rather than OLS regressions. For each sample, year, and gender, they estimate 
models for quantiles, 

[0.1, 0.3, ..., 99.7, 99.9] 

at intervals of one-fifth of a centile, with one additional model fit for the median (quan­
tile 50.0). These QR coefficients, β̂ (θ), provide the ’prices’ for the simulation exercise. 
Here, β̂ (θ) is a k × m matrix of quantile regression coefficients, where k is the number 
of elements in X and m is the number of quantiles (501) estimated in θ. 

2. Calculate the residual price vector β̂tw using equation (24). This yields β̂tb, a k×1 vector 
of between-group prices, and β̂tb, a k × (m − 1) matrix of ’within-group prices.’ -

β̂b	 β̂w3. Draw simulated data from the distribution	 f gt (X) , t , t by applying the price 

matrices β̂tb , β̂t
w to the rows of gt (X). 

Before applying the technique to simulate counterfactual distributions, AKK check the per­
formance of the model for replicating observed (actual) distributions of overall and residual 
inequality. AKK apply the QR coefficients β̂b β̂w to the quantity series, gt (X) from the t , t 

contemporaneous time period to generate simulated wage distributions. The simulated series 
are shown in Appendix Figure 1 of their paper. If the QR model were a perfect fit to the 
conditional wage distributions, these series would exactly overlap one another. In practice, 
the discrepancy between the actual statistic and the model-based simulations is small enough 
to be undetectable in most cases. 

To benchmark the performance of the quantile simulation procedure for residual wage 
inequality, AKK compare simulated and actual 90/10 residual wage dispersion by year and 
gender (Appendix Figure 2). The series labeled ’Observed Median Reg Residual’ is formed 
from median regressions of log hourly earnings on the covariates above. The series ’Simulated 
Median Reg Residual’ presents the corresponding statistics for the simulated series formed 
using β̂tw and gt (X). Since almost all prior residual decompositions analyze OLS regression 
residuals, AKK also plot 90/10 residual inequality for an identically specified OLS model. 

As is apparent from Appendix Figure 2, OLS and Median Regression residuals have 
nearly identical dispersion in the AKK application. This indicates that the distinction be­
tween mean and median regression is not substantively import for interpreting these residual 
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decomposition results. As is the case for the overall inequality series, the simulated residual 
series fit the observed data quite closely. 

5.6 Quantile implementation of the JMP and DFL models 

The quantile approach nests both the JMP and DFL models. 

5.6.1 Quantile implementation of JMP 

As before, write the observed distribution of wages at time t as a function of three com­

ponents: the distribution of worker characteristics, gt (X), the between-group prices βtb for 
those characteristics, and the within-group prices for those characteristics βtb, (suppressing 
“hats” on the estimated vectors). 

The observed change in inequality between any two periods, t and τ , can be decomposed 
into three components using the following sequential decomposition. Let ΔQθ = Qθ (fτ (w))− 
Qθ (ft (w)) equal the observed change in the θth wage quantile between periods t and τ . Define 

ΔQX = Qθ f gτ (X) , βb, βw − Qθ f gt (X) , βb, βw ,θ t t t t 

as the contribution of changing quantities (labor force composition) to ΔQθ. Define 

ΔQb = Qθ f gτ (X) , βb, βw − Qθ f gτ (X) , βb, βw 
θ τ t t t 

as the marginal contribution of changing between-group prices to ΔQθ. And, finally define 

ΔQw
θ = Qθ f gτ (X) , βτ

b, βτ
w − Qθ f gτ (X) , βτ

b, βt
w 

as the marginal contribution of changing within-group prices to ΔQθ. 
Notice that this decomposition sums to the total observed change: ΔQX

θ +ΔQb
θ +ΔQw

θ = 
ΔQθ. This is an important advantage over the JMP procedure, in which the ’residual price 
and quantity component’ must be estimated as a remainder term after the other two com­

ponents are calculated. 

5.6.2 Quantile implementation of DFL 

Interestingly, the notation above makes it apparent that the DFL procedure is simply the 
first step of the JMP decomposition above. In particular, 

ΔQDF L 
θ = Qθ f gτ (X) , βt

b, βt
w − Qθ f gt (X) , βt

b, βt
w = ΔQθ

X . 
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Why does DFL only do Step 1? Because the DFL procedure simply reweights the function 
nmapping X ns to w s (given by βtb, βtw in our QR model) using the change in the density of 

X ns between t and τ (gt (X) to gτ (X)). Since DFL do not explicitly model ’prices’ (βtb, βtw 

in the quantile model), they do not take Steps 2 and 3 where these prices are varied. 
Similarly, the Lemieux (2004) procedure for reweighting residual densities can be written 

as 
ΔQL

θ = Qθ f gτ (X) , βt
b = 0, βt

w − Qθ f gt (X) , βt
b = 0, βt

w = ΔQθ
X . 

Unlike the quantile approach, Lemieux estimates βtw using OLS. But this difference is unlikely 
to be important. 

5.6.3	 Advantages and disadvantages of the quantile decomposition relative to 
other approaches 

An advantage of the QR approach is that it nests JMP, DFL, and all extensions to DFL that 
have been recently proposed. I would also argue that it handles each of these cases somewhat 
more transparently than the competing techniques. 

A second virtue of QR is that procedure explicitly models the separate roles of quantities, 
and between- and within-group prices to overall inequality. That is, DFL and extensions never 
explicitly estimate prices, although these prices are implicit in the tool. By contrast, JMP 
do estimate prices (both observed and unobserved). But in practice, their residual pricing 
function does not quite work as advertised unless one conditions the residual distribution 
(Ft (θ|Xit)) very finely on all combinations of X ns. 

A third virtue of QR is that it satisfies the adding-up property. That is, if the QR model 
fits the data well, the sum of the components of the decomposition will add up to the total. 
(Of course, it is still a sequential decomposition; the order of operations matters.) 

Finally, unlike JMP and extensions, QR provides a consistent treatment of between- and 
within-group prices (there is no ’hybridization’ of OLS and logit/probit models). 

The QR decomposition has two notable disadvantages. 
First, it is parametric. The precision of the simulation will depend on the fit of the QR 

model which in turn depends on the characteristics of the data and the richness of the QR 
model. By contrast, the DFL procedure and its extensions never actually parameterize the 
conditional distribution of wages, F (w|X). Hence, the treatment of F (w|X) in DFL is fully 
non-parametric. Notably, DFL must parameterize the reweighting function (through the 
probit/logit). I’ve never seen any work documenting the amount of slippage induced by that 
process. It is possible that DFL provides a more precise fit to the distribution than the fully 
parametric QR model. (It would be nice to test this). 
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Second, the QR model is computationally intensive. Consider that one must estimate 
∼ 100 − 500 QR models for each data set, save a large matrix of parameters, and then draw 
large amounts of data from g (X) and θ to calculate ŵ and form counterfactual distributions. 
Given current computational resources, this is typically burdensome. 

6 [Optional] Application of quantile decomposition to U.S. wage 
structure 1973 - 2003: Lemieux 2006 and Autor, Katz and Kearney 2005 

The 2006 AER paper by Lemieux on your syllabus proposes a novel explanation for rising 
residual wage inequality in the U.S. “Using data from the May and Outgoing Rotation 
Group (ORG) supplements of the CPS, this paper shows that a large fraction of the growth 
in residual wage inequality between 1973 and 2003 is due to spurious [emphasis Autor’s] 
composition effects. These composition effects are linked to the secular increase in the level 
of experience and education of the workforce, two factors associated with higher within-group 
wage dispersion. Once these factors are corrected for, I find that residual wage inequality 
only accounts for a small share of the overall growth in wage inequality. Furthermore, all of 
the growth in residual wage inequality occurs during the 1980s.” 

The Autor, Katz, Kearney 2005 paper (“Rising Wage Inequality: The Role of Composition 
and Prices”) is in large part a comment on Lemieux 2006. So, it should be stressed that the 
important insight that changing labor force composition has contributed to the observed rise 
of residual inequality is due to Lemieux. 

Viewing the same facts, AKK reach quite different conclusions from Lemieux. In par­
ticular, they do not concur that “Furthermore, all of the growth in residual wage inequality 
occurs during the 1980s.” Why? 

There are two main substantive differences between Lemieux and AKK. First, Lemieux 
does not (for the most part) distinguish between movements in upper and lower tail residual 
inequality. Instead, he looks only at the sum of the two (the 90/10 – or the variance of wage 
residuals, which obviously doesn’t distinguish between the upper and lower tail). Why is that 
problematic? As discussed in class, upper and lower tail inequality only move in tandem from 
1979 to 1986. After 1986, they diverge radically, with lower-tail inequality flattening and then 
compressing and upper-tail inequality rising steadily to the present. Hence, analyzing only 
the aggregate trend in the two may provide an incomplete picture. 

In particular, Lemieux finds that the rising education and experience of the labor force 
can mechanically explain the plateauing of residual inequality during the 1990s. But this 
inference appears to aggregate over two countervailing forces. The first is the contraction 
in lower-tail inequality in the 1990s (which as shown above) appears ’due to’ compressing 
residual ’prices’ buffered by changing composition. The second is the rise in upper-tail 
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inequality, which appears entirely explained by price changes. Because composition over­
explains the former phenomenon and under-explains the latter, it is technically accurate to 
say that composition can “fully explain” the aggregate trend in residual inequality during 
the 1990s. But when upper and lower-tail inequality are considered separately – as seems 
appropriate given their substantial divergence in the last decade – composition does not 
appear a satisfying explanation for either. 

The second main difference with Lemieux (much less important) turns on an issue posed 
by all sequential decompositions—namely, that the order of operations matters. Lemieux 
chooses to focus on counterfactual residual inequality trends that hold labor force composition 
constant at the 1973 level while varying ’prices’ over 1973 to 2003. Alternatively, one could 
have held composition at 1988, 2003, or any other intervening year. As the AKK figures show, 
this choice matters. Holding composition at the initial 1973 level maximizes the inference 
that residual inequality fell after 1988. Why? Because the 1973 labor force over-represents 
high school dropouts and high school graduates and under-represents college grads relative 
to the labor force of the next three decades. Now, recall that the compression of inequality 
after 1987 is greatest for less educated workers and the expansion greatest for more educated 
workers. Hence, holding composition at the 1973 level maximizes the representation of groups 
experiencing wage compression and minimizes the representation of groups experiencing wage 
expansion. As shown in the AKK figures, Lemieux’s choice of weights does matter for his 
conclusions. 

[A final point of contrast is that Lemieux’s decomposition focuses only on residual inequal­
ity. A potential disadvantage of this approach is that the allocation of wage variation into 
’between-group’ and ’residual’ components is inherently arbitrary; it depends upon which X ns 
are included in the conditioning set. By contrast, the sum of between and within-group in­
equality is invariant to the conditioning set – since it is equal to observed inequality. For this 
reason, it may be generally more useful to analyze ’between-group’ and ’residual’ inequality 
jointly.] 

7 Unconditional Quantile Regression 

The 2009 Econometrica paper, “Unconditional Quantile Regressions” (UCR), by Firpo, 
Fortin and Lemieux, develops a set of tools for estimating the effect of covariates on the 
unconditional distribution of wages. This is valuable because, as above, we are generally 
much more interested in the effect of covariates on the unconditional (marginal) distribution 
of wages than on the conditional distribution. As we saw with Machado-Mata, moving from a 
conditional quantile regression to an estimate of the effect of covariates on the marginal wage 
distribution is cumbersome, typically requiring numerical integration. The FFL approach 
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presents a way around this problem. 
The discussion below outlines their approach, drawing with permission on (1) lecture notes 

by Arin Dube of UMass Amherst (Econ 797B: Empirical Methods in Labor Economics, Fall 
2011); and (2) recitation notes by Sally Hudson, 14.662 TA in spring of 2013. Sally in turn 
credits James Gentle of George Mason University for his lecture notes on “Sensitivity of 
Statistical Functions to Perturbations in the Distribution.”3 

7.1 Graphical intuition 

Firpo, Fortin, and Lemieux (2009) a method for recovering effects on unconditional quan­
tiles from conditional quantile estimates that is much less computationally intensive than 
the Machado-Mata approach. Before we dive into the math, let’s introduce the intuition 
graphically. 
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To fix ideas, suppose we want to estimate the effect of education on the U.S. wage distri­
bution. Imagine that the blue line in the above graph plots the CDF of log wages, Y . That 
means the vertical axis measures quantile levels τ ∈ [0, 1] and the horizontal axis measures 
the corresponding wage values at each quantile. Let’s say the hash marked τ is the median 
so that qτ is the median wage, which is currently about $27,000. 

Now suppose we perturbed the distribution of educational attainment in the population 
– perhaps by giving everyone an additional year of schooling. What would we expect to 
happen to the wage distribution? In partial equilibrium, earnings should rise throughout 
the wage distribution. That means that $27,000 would now correspond to a lower quantile 
in the wage distribution, labeled τ n above. Indeed, at every wage value we would expect to 
find fewer people with wages below that value. This shift is represented by the red CDF, 

3Link to Gentle’s Notes 
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which lies everywhere below the blue CDF. By the same token, for any fixed quantile (like 
the median τ) the new wage value (qτ ' ) will be larger than the old wage value (qτ ). 

The goal of unconditional quantile regression is to estimate quantities like qτ 
n − qτ , the 

change in median wages associated with the change in education. FFL’s insight is that if the 
blue CDF and red CDF have roughly the same slope around qτ , then 

(slope of blue CDF at qτ ) × (qτ 
n − qτ ) = τ − τ n 

And what is the slope of the CDF? It’s the probability density function fY , which is something 
we know how to estimate! We can therefore back out the effect on the median as follows. 

τ − τ n 
qτ 
n − qτ = 

fY (qτ ) 

This is the intuition behind the unconditional quantile regression method that follows. 

7.2 Influence functions 

Now for a quick mathematical digression. To understand FFL’s procedure, we need to discuss 
a class of functions called influence functions. Influence functions measure the sensitivity of a 
distributional statistic, like the mean or median, to a small change in the data’s distribution. 
Taking the derivative of one function with respect to another function is a broad class of 
problems in analysis, but the good news is that cumulative density functions are a rather 
narrow class of functions. They’re bounded on the unit interval, and they’re monotonically 
increasing. These restrictions allow for a nice characterization of the functional derivative 
known as the Gateaux derivative. 

7.2.1 The Gateaux derivative 

Let T be a statistic of a distribution F and let G be an alternate distribution. The Gateaux 
derivative captures the change in the value of T as we perturb F to look more like G. 
Formally, the Gateaux derivative is written 

T [(1 − t)F + tG] − T (F )
L(G; T, F ) = lim 

E→0 t 

Note that the first term in square brackets is just a convex combination of F and G. As 
t → 0, the expression puts more weight on F and less weight on G. 

Influence functions are Gateaux derivatives in which the distribution G is just a point 
mass at some value x. That is, 
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0 for µ < x 

G(µ) = 
1 for µ ≥ x 

The picture above illustrates the idea of perturbing a distribution by a point mass. The 
solid curve plots the PDF of the reference distribution F . Imagine that we shaved an t mass 
off the top of f and piled it up at the point x on the right. As t → 1, the PDF of f would 
flatten and disappear and the mass at x would approach a point mass. Now consider the 
same change in reverse. Imagine we started with a point mass at x and took 1−t of that mass 
and spread it out over the distribution of f . As t → 0, the point mass would shrink and the 
dashed curve would converge to f . This is conceptually what’s happening in the definition 
of the influence function. If we let δx denote a point mass at x, the influence function for 
statistic T and distribution F is 

T [(1 − t)F + tδx] − T (F )
IF (x; T, F ) = lim 

E→0 t 

In essence, the influence function asks, “What would happen to my statistic T if I added a 
single observation at x to the distribution F ?” Recall that a single point has no mass in a 
continuous distribution, which is why we obtain this result by letting t → 0. 

7.2.2 Example: The Influence function of the mean 

Here’s a quick example of an influence function derivation. Let T (F ) be the mean of F . The 
influence function is then 
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E [(1 − t)F + tδx] − E [F ]
IF (x; T, F ) = lim 

E→0 t 
(1 − t)E [F ] + tE [δx] − E [F ] 

= lim 
E→0 t 

−tE [F ] + tx 
= lim 

E→0 t 
= x − µF 

In finite samples, the formula below shows how the influence function can be used to deter­
mined the effect of a new data point on an estimated statistic. 

1 
Tn ≈ Tn−1 + IF (x; T, Fn−1) 

n 

To see this in action, suppose our initial sample is just {3,4,5}. The mean of this sample is 
4. Now suppose we add an observation at 20. Then the new mean is 

1 20 − 4 
µ̂n−1 + (x − µ̂n−1) = 4 + 

n 4 
= 8 

which you can verify is the mean of the sample {3,4,5,20}. 

7.2.3 The influence function of the quantile 

The influence function of the quantile is only slightly more complicated.4 

τ − 1 {Yi ≤ qτ }
IF(Yi; qτ , FY ) = 

fY (qτ ) 

The intuition is similar to the graphical argument made in Section 7.1. For a given τ , if we 
observe a new data point below qτ we adjust our estimate of the quantile downward. We 
then scale that adjustment by the slope of the CDF, which translates a change in τ ns to a 
change in Y . 

4I have temporarily removed the derivation of this influence function from these notes as it may be used 
on the upcoming problem set. 
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7.2.4 The Recentered Influence Function (RIF) 

The key to FFL’s unconditional quantile estimation method is a clever transformation of the 
influence function. They define the recentered influence function (RIF) as the sum of the 
influence function and the original statistic.; 

RIF(Yi; qτ , FY ) = qτ + IF (Yi; qτ , FY ) 
τ − 1 {Yi ≤ qτ }

= qτ + 
fY (qτ ) 

Note that the expectation of the RIF for any quantile qτ is just the quantile itself. 

τ − E [1 {Yi ≤ qτ }]E [RIF(Yi; qτ , FY )] = qτ + 
fY (qτ ) 

τ − τ 
= qτ + 

fY (qτ ) 
= qτ (25) 

This observation is going to help us to overcome the linearity problem discussed above. 

7.3 RIF Regression 

We now have the tools we need need to estimate the response of an unconditional quantile 
to a change in explanatory variables. As in both OLS and CQR, we start by estimating a 
linear approximation to a conditional function, in this case the conditional RIF. 

X nE [RIF (Yi; qτ , FY ) | Xi] = iβτ + ti (26) 

We can then use the identity in (25) to show that these coefficients will also capture effects 
on the unconditional quantile function, which is what we’re really after. 

qτ = E [RIF(Yi; qτ , FY )] 

= E [E [RIF (Y, ; qτ , FY ) | Xi]] 

X n = iβτ 

To estimate βτ , we start by rearranging the conditional RIF in terms of things we observe in 
the data. 
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τ − E [1 {Yi ≤ qτ } | Xi]E [RIF(Yi; qτ , FY ) | Xi] = qτ + 
fY (qτ ) 

τ − (1 − Pr {Yi > qτ | Xi}) 
= qτ + 

fY (qτ ) 
τ − 1 1 

= qτ + + ·Pr {Yi > qτ | Xi}
fY (qτ ) fY (qτ ) 
1 

= c0τ + ·Pr {Yi > qτ | Xi}	 (27)
fY (qτ ) 

Substituting (26) into (27) gives 

1 
c0τ + ·Pr {Yi > qτ | Xi} = Xiβτ + ti

fY (qτ ) 
Pr {Yi > qτ | Xi} = −coτ + Xiβτ fY (qτ ) + ti (28) 

And equation (28) is something we can estimate! Here’s how: 

1. Generate	 a dummy variable Di that indicates whether person i’s wage exceeds the 
chosen quantile. That is, 

0	 for Yi ≤ qτ
Di(Yi) = 

1 for Yi > qτ 

This is the left hand side variable in (28). 

2. Run an OLS regression of Di on a constant and the vector of covariates Xi. 

Di = γ0 + Xiγ1 + νi 

Note that γ1 = βτ fY (qτ ) in (28), which is just the marginal effect of X on the fraction 
of outcomes above the threshold qτ . 

3. Generate a kernel density estimate of fY to obtain f̂  
Y (qτ ). 

4. Divide γ̂1 by f̂  
Y (qτ ) to obtain β̂τ .  

γ̂1 
β̂τ = 

f̂  
Y (qτ ) 
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That’s it! This is the estimated effect of a change in the covariates on the unconditional 
quantile of Y . 

Note that more generally for any cutoff yc, we can create a dummy variable ỹc = 1(y > yc). 
We can then regress ỹc on X nβτ and get β̂c. This regression estimates a well defined quantity, 
the marginal effect of X on the fraction of outcomes above a cutoff. Inverting that relationship 
is the key to both FFL’s approach and to Chernozhukov et al. (2009), who propose globally 
inverting distributions rather than using FFL’s localized approach. 

7.4 Limitations of RIF Regression 

RIF regression methods are only as good as the kernel density estimate of fY . For variables 
that are smooth by construction, like standardized test scores, this is not such a problem, 
but for variables where there is considerable heaping, like wages, the estimates of fY may 
depend a lot on subjective choices about the smoothing factor. Note that when values of 
f̂  
Y (qτ ) are close to zero, the difference between, say, f̂  

Y (qτ ) = 0.10 and f̂  
Y (qτ ) = 0.05 leads to 

a doubling of the estimated treatment effect, so discrepancies that seem small in an absolute 
sense can translate into big differences in outcomes. 

RIF regression also relies on the assumption that we can locally invert fY in some neigh­
borhood of qτ . Chernozhukov et al. (2009) show that we can sometimes inverted the density 
function globally rather than locally, which eliminates the need for this assumption. Global 
inversion is very computationally intensive, however, and sometimes intractable. 

And, as with all of the decomposition methods we’ve discussed, RIF regressions pro­
duce partial equilibrium results. They don’t allow for prices to respond to changes in the 
distribution of X’s, which we know is probably unrealistic. 

8 The Contribution of Tasks, Unions, and Labor Market Composition to 
Wage Structure Changes 

The 2011 working paper by FFL called “Occupational Tasks and Changes in the Wage 
Structure” applies the FFL unconditional quantile model to examine the role that three sets 
of factors have played in the evolution of the U.S. male wage structure (no idea why they limit 
to males) over the last several decades (though their focus is on 1989–2001). These factors 
are changes in labor market composition (education, experience), changes in unionization, 
and changes in the returns to various tasks. All three of these factors are allowed to affect the 
wage structure through both a compositional (quantity) effect and a wage structure (price) 
effect. The quantity effect corresponds to the observations that some X ns may be associated 
with higher wage dispersion (or more complex quantile effects), for example, there is higher 
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wage variance among experienced college-educated workers than among experienced high-
school educated workers. The wage structure (price) effect refers to the change in the returns 
to those same characteristics (e.g., education, experience), which may also affect wages at any 
and all quantiles. The distinction between composition and price effects is relevant because 
a change in the distribution of X/s can affect the shape of the wage distribution without any 
change in the returns to those X ns, and more conventionally, a change in the returns to a set 
of X/s can alter the shape of the wage distribution without any change in the distribution of 
X ns. 

Other than their use of the UCR, the main conceptual object introduced in FFL 2011 is 
what they refer to as a Roy model of occupational task pricing. Specifically, FFL propose 
that the wage paid to individual i in occupation j at time t can be written as: 

K 

wijt = θjt + rjkt × Sik + uijt, 
k=1 

where rjkt is the return to task k in occupation j in year t and sik is the skill of worker i in 
task k. Note that there is no ’law of one price’ for tasks in this model; tasks have different 
values in different occupations. Hence, as in a Roy model, workers will not be indifferent 
across occupations since some occupations will offer strictly higher wages than others for the 
skill bundle that they possess. 

This naturally leads to an array of questions on how equilibrium task prices are set, how 
workers self-select across occupations, what equilibrium conditions govern the system, etc. 
Without very strong additional assumptions, it will clearly be quite difficult to get any firm 
predictions about equilibrium pricing and self-selection in this model, however. FFL do not 
attempt to tackle these problems. Rather, they implicitly take as exogenous the pricing 
of tasks and, additionally, take as fixed (or at least ignorable) the self-selection of workers 
into occupations with differing task demands and prices. This latter issue (self-selection) 
seems potentially first order since if task prices are changing, as FFL posit, this should cause 
endogenous reallocation of workers across occupations in response to changing comparative 
advantage. 

FFL’s model is probably best understood as a statistical statement rather than an eco­
nomic model since both partial equilibrium considerations (self-selection of workers across 
occupations according to comparative advantage) and general equilibrium conditions (simul­

taneous determination of worker assignments and task prices) are not actually considered. 
While this statistical model may be suitable for FFL’s paper, it’s probably a bit of a stretch 
to call it a Roy model since it ignores the economic phenomenon—endogenous assignment of 
workers to jobs—that Roy’s model was designed to interpret. 

35  

∑



�

  

 

�

The empirical leverage that the FFL statistical model offers is as follows. Rewriting the 
equation above in first-differences: 

K 

Δwij = Δθj + Δrjk × Sik +Δuij . 
k=1 

Using a simple linear approximation, one can express the relationship between the change in 
the wage and its initial level as: 

Δwij = ãj + b̃j wij0 + eij , 

if one assumes (restrictively) that the skill components Sik are uncorrelated, it’s a straight­
forward to calculate that: 

K 
Cov (Δwij , wijo) rjk0Δrjkσ

2 
k=1 jk 

b̃j = = .
K σ2Var (wijo) r2 + σ2 
k=1 jk0 jk ujo 

Thus, the ’slope’ relating wage changes to wage level will tend to steepen in occupation j 
if task prices rjk in that occupation rise. This basic idea is developed more fully in the 
Technical Appendix of FFL 2011. 

Empirically, FFL estimate their models in two stages. A first is to estimate models for 
quantiles of wage changes in each occupation: 

q qΔwj = α̃j + β̃j wj0 + λq + εj
q , 

where the qns refer to percentiles of the wage distribution. The α̃’s measure ’between’ occu­
pation wage changes while the β̃’s measure within occupation changes in variance. 

FFL then regress the estimated α̃j ’s and β̃j ’s on occupational tasks, which they interpret 
using the following approximations: 

K Δσ2(rjk0Δrjk) · σ2 
jg k=1 jk 

β̃j ≈ + ,
σ2 2σ2 
j0 j0 

and 
K 

¯α̃j = Δδj + Δrjk Sjk. 
k=1 

Thus, loosely, this model says that the intercepts and slopes of occupations with rising 
task prices will rise, and vice versa for occupations with falling task prices. Under the 
(unstated) hypothesis that although task prices differ across occupations, their changes move 

36  

∑

∑∑

∑

∑



similarly across occupations (that is, the price of routine tasks declines in all occupations 
simultaneously), this model makes predictions for the evolution of slopes and intercepts of 
occupations as a function of their initial routine, abstract and manual task content (though 
these are not the terms that FFL employ). 

9 Conclusion 

Ultimately, the DFL, JMP, and MM wage density decomposition approaches to analyzing 
counterfactuals can only be slightly convincing at best given that they apply partial equi­
librium tools to analysis of general equilibrium problems. Nevertheless, these techniques are 
widely used, and it is worth understanding them. 
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