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Part 1: DiNardo, Fortin, and Lemieux (1996)

Part 1: Review: DiNardo, Fortin, and Lemieux (1996)
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Motivation
Why All the Fancy New "Metrics?

@ Growing interest in the distribution of wages

@ Would like to link distributional features of Y; to other factors, X;

o As a descriptive task (e.g. “how much of the 90t"-10% percentile gap
in wages can we explain by differences in education?")

o To answer causal questions (e.g. “what would happen to the 10th
percentile of earnings if we made community college free?")

@ OLS/IV are all about means; to say something about other
distributional features, we have to learn some new skills

@ In some cases (e.g. “conditional” v. “unconditional” quantile
regression), we have to face issues that OLS inherently sidesteps
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3ETe BRI \EYS [N ST TN RS TINE G )M DiNardo, Fortin, and Lemieux (1996)
DFL "’ [
96 Overview

@ DFL extend the Oaxaca-Blinder mean-decomposition intuition to
decompose wage distributions

@ Basic idea: write

f(w;tw,tz):/f(wyz,tw,tz)dF(zth,tz)

z

where w = wage, z = individual attributes, t, = "“time"
(parameterizes distribution of v)

o Assume f(w|z,ty,t;) = f(w|z,ty), dF(z|ty,t;) = dF(z|t;):
flw;ty, =t t,=t')= / f(w|z, t, = t)dF(z|t, = t)
- / F(wlz, tw = )W(z: ', £)dF (2]t = t)

where y(z;t',t) = dF (z|t, = t')/dF (z|t, = t)
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DiNardo, Fortin, and Lemieux (1996)
7
DFL '96 Results

e y(z;t',t) a “reweighting” that gives a “counterfactual” distribution
of wages when t' # t (like O-B)
o Once you estimate y(z;t',t), you can estimate (by KDE) “the density
[of wages| that would have prevailed if individual attributes had
remained at their 1979 level and workers had been paid according to
the wage schedule observed in 1988"

o By Bayes' rule:
(21t 1) = P(zlt") _ P(t'|z)-P(2)/P(t') _ P(t'|z) P(t)
Y= Pelt) T P(tl2) - P(2)/P(2) — P(tl2) P(r)

and it's easy to estimate these pieces (DFL use probit)

@ DFL show this decomposition, while also accounting for changes in
unionization rates and the min. wage (see notes for details). Find a
lot of residual difference between 1979 and 1988 wage distribution

o Reminder #1: decomposition order matters (as with O-B)
o Reminder #2: partial equilibrium exercise (by assumption)
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Part 2: Quantile Methods

Part 2: Quantile Methods
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Conditional Quantile Regression
Conditional QR: a Review

@ The quantile function Qy is defined as the inverse of a CDF:
Qv(tlXi)=y — Fy(y[Xi)=7
It is thus invariant to monotone transformations T(-):
Qv(tlX)=y = P(Yi<ylXi)=1 =
P(T(Y)) < T(y)|IXi) =1 = Qr(v)(71Xi) = T(Qy(7]X;)) = T(y)
e Conditional QR models Qy(7|X;) as a linear function of X;:
Qv (71X;) =X;B-
@ This implies (can verify by writing out integrals and taking FOC):
Be =argminE [pe(¥ — X[b)]
pr(e):{w’ e>0
(1-1)lel, €<0
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Conditional Quantile Regression
Interpreting Conditional QR

@ A linear Qy(7|X;) is consistent with a location-scale model:
Y; = X,-/Ol —|—X,-,58,', g 1 X;
Since Y; is monotone in & conditional on X;:

Qv (7]Xi) = Xja + X6 Q:(7]X))
— X+ X!5Qe(t) = XIBs

o B is the effect of X; on the 7% quantile of Y (not the effect on the
tth quantile individual)

e If X; is multidimensional, B; 1 is the effect of X on the rth quantile
of Y, conditional on Xj>... X«

o Ex: X;=[D; W,’]' for D; binary: Br1 = quantile treatment effect
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Conditional Quantile Regression
Why is QR “Conditional” when OLS is not?
@ Suppose Y; = BD;+ W/y+(1+ D;) & with & L D;, W,
= Both E[Y|D;, Wi] and Qy(t|D;, W;) are linear
@ Both QR and OLS give the conditional effect of D; on Y;:
E[Y1i|Wi] — E[Yoi|Wi] = B+ Wy + E[2&]] — (W/y + Elei])
=p
Qvi (t|Wh) = Qv (tIW)) = B+ W[y +2Q¢(7) — (W7 + Qe(7))
=B+ Qe(7)
@ But not necessarily the unconditional effect:
E[Y1i] — E[Yoi] =B + E[W/Y] + E[2&;] — (E[W/7] + Elei])
=p
Qy,(T) — Qvy(7) =B + Qury12¢(7) — Qurryre(T)
#B + Qury(T) +2Q:(7) — (Qury(7) + Qe(7))
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Machado and Mata (2005)
“Unconditioning” QR: Machado and Mata (2005)

Skorohod representation: Y; = Qy(6;|X;) for 6;|X; ~ U(0,1), because
0; = Fy(Y,"X,') — 9,"X; ~ U(O, 1)
Qy (6i|Xi) = Qy(Fy (YilX)|Xi) =i
M&M Marginalizing Method:
Q@ Vw € supp(W;), draw 6;, simulate (\71;,-, \70;,-) with @(B;ID,-, W)

@ Average up (571;;,\70;0 by fw (w)

© Compute C/Q;(T) — 6;0(1)
Simple, right?
...not really.
e Computationally demanding (especially if you bootstrap SEs!)
e Can be quite sensitive to linear approximation of Qy(6;|D;, W;)
o Curse of dimensionality: fy(w) can be poorly estimated
9/19



=T BN ONENIER VIS IEM  Firpo, Fortin, and Lemieux (2009)

“RIF-ing” QR: Firpo, Fortin, and Lemieux (2009)

Graphical intuition:
1

T=Prob(Y <q). F(Y) = F(h(X.e)) o
v = Prob(h(X+.€) < q.) i FOXtte)
q, 15 such that i

2 7= Prob(h(3{+t.8) <q.)

=

[:]

a2

e

=5

@ T

> ’

£ q;-q; = m(t-T).

i where m = 1/f,

E and fis the density

o

0

@ q

Outcome variable (Y)

Unconditional effect on the 7t quantile:

le(f) - QYO(T) ~

FYO(QYO(T)) — FY1(QY0(T))

Fro( Qv (7))
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Part 2: Quantile Methods Firpo, Fortin, and Lemieux (2009)

Influence Functions: A Quick Overview

Q: “What happens to statistic Tx(F) if | peturb F by adding mass at x"?
A:

F (v ToF) = iy Tx((1 —8)F—|;85X)— Tx(F)
£

e Ex. 1: Tx(F):EXNF[X;]Z
Ex~(1-e)F+es.[Xi] — Ex~F[Xi]

IF(x; Tx,F)=lim

e—0 £
_lim (1—8)EX~F[X,']+£EXN5X[X;] —EXNF[X,']
50 £
—eExr[X; Ex.s.[Xi
—im EExp[Xi| +€Ex~s, | ]:X_“X
e—0 €

e Ex. 2: Ty(F): Qy;F(T)Z
. _T_]-{)/SQ ;F(T)}
FlviTv.F)= fY(Qv;FE/T))
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Part 2: Quantile Methods Firpo, Fortin, and Lemieux (2009)

Recentered Influence Functions

o FFL define:

7—1{y < Qy.r(7)}

RIF(y; Qv.r (1), Fy) = Qy, '

0 Qrir (2 Fv) = Qrir () + =7 10 (7))

o Note the expectation of RIF(x; Tx, F) is just Tx(F):

T— E[1{Y; < Qv.r(7)}]
fy (Qy;r(7))

T—7
" A@rrm ~

e So if E[RIF(Y:; Qy,r(7),Fy)|Xi] = X!B,
Qv.r(7) = E[RIF(Y:; Qv.r(7), Fy)]
= E[E[RIF(Yi; Qy;r(7), Fy)|Xi]]
= E[X/1B

E[RIF(Y:; Qvir(7), Fy)l = Qyv;r(7) +

= Qv;r(7)

@ Coefficients of a conditional RIF also describe unconditional quantiles
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=TGR ONELIER VIS IIEM  Firpo, Fortin, and Lemieux (2009)

|dentifying RIFs

T— E[1{Y; < Qy.r(7)}|Xi]
fy (Qv;£(7))
B T—(1-P(Y;> Qy,r(7)|Xi))
= Qv,F(7)+ v (Qy.r (7))
e P(Y; > Qy.r(7)|X;)
‘ fy(Qv;F(7))

If E[RIF(YI. QY;F(T)v FY)‘XI'] = X/,ﬁ'

E[RIF(Y:; Qv.r(7), Fy)IXi] = Qy.r(7) +

o o POYi> Qvir(1)| Xi)
i fy (Qy:£(7))
= E[Ti|Xi]=—ac+ fv(Qv.r(7))XB

- Xip

where T; =1{Y; > Qy.r(7)}
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Firpo, Fortin, and Lemieux (2009)
Estimating RIFs

E[Ti|Xi] = —cc+ fy(Qv:r (1) XiB
So
Ti = —c:+fy(Qv,r(7)XiB + &
where E[g;| X =0
A regression!

Estimate (best linear approximation to the) RIF by:
@ Regressing T; =1{Y; > Qy.r(7)} on X;
@ Dividing B by fy(Qy;r(1))
© That's it!
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Firpo, Fortin, and Lemieux (2009)
RIF Limitations

RIF approximation depends crucially on the estimated f\\/(Qy;F(T))

RIF inherently marginal. influence f'n describes small changes in X;

o MM '05: “What is the avg. difference in quantiles of Yj; and Y;?”
(see also Chernozhukov et al. 2009)

e FFL '09: “What is the avg. effect on the quantile of Y; if we were to
randomly switch one individual from D; =0 to D; = 17"

@ As with all decomposition methods, RIFs reflect a “partial
equilibrium”: changes in D; holding W; fixed

...but at least it can describe the unconditional distribution!
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Bonus: Mundlak as OVB

Bonus: Mundlak as OVB

16/19



Bonus: Mundlak as OVB

The Mundlak Decomposition
As David showed in class, the fixed-effects regression

Yi=a+r'S;+u+e;
implies a decomposition of the coefficient from regressing Yj; on Sj:

r*=rl+1b
where
5~ Cov(w, )
Var(5;)
,_ Cov(S), i)
o Var(S))
We can think of A as the return to mean establishment schooling and b as

the association between worker and establishment schooling
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Mundlak as OVB

We can derive this decomposition from the classical omitted variables bias
formula:

rs — rl + 1 Cov(”./?‘gl_l)
~~ ~— ~~ Var(Sj;)
"short" "long" ‘"effect of omitted"
"regresion of omitted on included"
Define
g;j = S,J — 3_,'

which is the “within establishment” variation in Sj; (i.e. the residual from
regressing Sj; on establishment FEs. By construction

Cov(5;, ) = Cov(5;,5;+ 5)
= Var(5))
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Mundlak as OVB (cont.)

Therefore,

ol Cov(1, 5+ 55) _ -, Covln, 5+5y)  Var(S))
Var(5; + Sj) Var($;) Var(5;+ Sj)
. Cov(uj,5)) Cov(5;,55)

B Var(5;) Var(5;)

since Cov(u;,S;) =0, also by construction. This is Mundlak.
We can also use OVB intuition to estimate this decomposition; note that

Cov(5;,5y)
Var(S;i)

is the OVB formula for the “long” regression of

rr=rl+2

Y,'J' = (Xl+r15ij+l§j+8,-lj

which we can run to estimate A(and then solve for b)!
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