14.662 Recitation 11

Card, Cardoso, and Kline (2014): Bargaining, Sorting, and the Gender Wage Gap

Peter Hull

Spring 2015

Bargaining and Wage Premiums

- More profitable firms may command wage premiums in a frictional labor market (e.g. Manning, 2003)
 - Do equally-productive men and women strike different wage bargains?
 - Do women sort to firms with lower premiums?
 - Contrast to productivity/discrimination explanations for gender wage gaps (Mulligan and Rubenstein, 2008; Becker, 1957)
- Abowd, Kramarz, and Margolis (1999) framework identifies wage premiums from matched worker-firm data
 - Can estimate premium distribution for men and women; decompose gap into within-and between-firm components
 - Challenge: need a normalization to compare premiums across gender
- Card, Cardoso, and Kline (2014) use Portugese worker-firm data
 - \bullet Firm-specific premiums explain $\approx 20\%$ of wage variation
 - 5% of gender wage gap appears due to differential bargaining
 - ullet 15% of gap explained by under-representation at profitable firms

A Model of Wage Premiums

• Log wages of individual i of gender G(i) in period t at firm J(i,t):

$$w_{iJ(i,t)t} = \alpha_{it} + \gamma^{G(i)} S_{iJ(i,t)t}$$

 a_{it} : "alternative wage" $S_{iJ(i,t)t}$: "match surplus." Bargaining: $\gamma^{G(i)}$

- Assume $S_{iJ(i,t)t} = \bar{S}_{J(i,t)} + \phi_{J(i,t)t} + m_{iJ(it)}$ (no i,j,t complementarity)
- Further project α_{it} onto observables: $\alpha_{it} = \alpha_i + X'_{it} \beta^{G(i)} + \varepsilon_{it}$
- Then we can write two-way FE model

$$w_{it} = lpha_i + \psi^{G(i)}_{J(i,t)} + X'_{it} eta^{G(i)} + r_{it}$$
 where $\psi^{G(i)}_{J(i,t)} \equiv \gamma^{G(i)} ar{S}_{J(i,t)}$ and $r_{it} \equiv \gamma^{G(i)} (\phi_{J(i,t)t} + m_{iJ(i,t)}) + arepsilon_{it}$

AKM-Style Identification

• Can we estimate this by OLS? Need orthogonality:

$$E(r_{it}-\bar{r}_i)$$
 $D^j_{it}-\bar{D}^j_i$ $|G(i)|=0, \forall j$

For
$$D_{it}^j = \mathbf{1}\{J(i,t) = j\}$$
 and time averages $ar{r}_i$ and $ar{D}_i^j$

Consider two-period model (equivalent to first-differences):

$$E[\Delta r_i \cdot \Delta D_i^j | G(i)] = E[\Delta r_i | \Delta D_i^j = 1, G(i)] P(\Delta D_i^j = 1, G(i)) - E[\Delta r_i | \Delta D_i^j = -1, G(i)] P(\Delta D_i^j = -1, G(i))$$

In steady state, expect
$$P(\Delta D_i^j = 1, G(i)) = P(\Delta D_i^j = -1, G(i))$$

- Identified if "joiners" and "leavers" have same Δr_i on average;
 - (Tortured) analogy: time as a binary instrument, joiners/leavers as compliers/defiers. ATE identified if $Cov(Y_1 Y_0, D_1 D_0|G) = 0$

Violations of Orthogonality

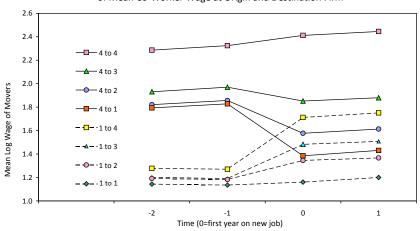
Can write:

$$\Delta r_i = \gamma^{G(i)} (\phi_{J(i,2)2} - \phi_{J(i,1)1} + m_{iJ(i,2)} - m_{iJ(i,1)}) + \Delta \varepsilon_i$$

- Identification fails if:
 - Mobility is related to firm-wide shocks (ϕ): workers may be more likely to leave firms experiencing negative shocks (expect "Ashenfelter dips")
 - Mobility is related to match quality (m): expect workers moving from firm A to B see different wage changes than from B to A
 - Mobility is related to transitory wage shocks (ε): workers performing well may move to higher wage firm (also expect imbalanced pre-trends; richer X_{it} controls may help here)
- CCK look for non-parametric evidence of violations of these (strong) restrictions

Identification Diagnostics (Men)

Figure 2a: Mean Wages of Male Job Changers, Classified by Quartile of Mean Co-Worker Wage at Origin and Destination Firm

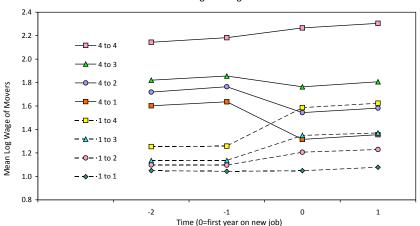


Courtesy of David Card, Ana Rute Cardoso, and Patrick Kline. Used with permission.

• Parallel pre-trends; apparently symmetry

Identification Diagnostics (Women)

Figure 2b: Mean Wages of Female Job Changers, Classified by Quartile of Mean Co-Worker Wage at Origin and Destination Firm



ullet Note orthogonality needed for each j, not just on average (not tested)

Normalization

- In AKM, firm effects are only identified up to a normalizing constant within "connected sets" (firms that have movers in common)
 - Just as only cells with variation contribute effects to usual FEs
- In two-sector CCK, need a further normalization to compare across sectors (i.e. compare female premiums to male)
- In CCK's model, true premiums should be zero at firms that offer no surplus above the alternative wage. Using annual value-added data to proxy for average surplus, normalize

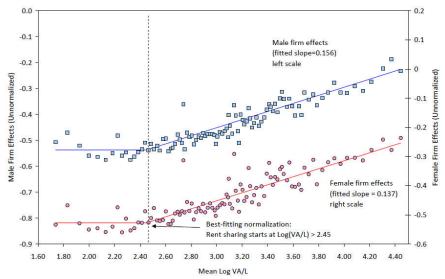
$$E[\psi_{J(i,t)}^g|\bar{V}A_{J(i,t)}\leq \tau]=0$$

for some estimated au

• Reflects "hockey-stick" pattern shape in estimated firm fixed effects

Normalizing Firm Fixed Effects

Figure 4: Firm Fixed Effects vs. Log Value Added/Worker

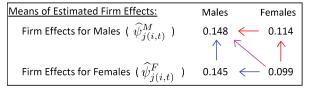


Courtesy of David Card, Ana Rute Cardoso, and Patrick Kline. Used with permission.

Decomposing Premiums

As in typical Oaxaca-Blinder decomposition,

$$E[\psi^{M}|G = M] - E[\psi^{F}|G = F] = E[\psi^{M} - \psi^{F}|G = M] + E[\psi^{F}|G = M] - E[\psi^{F}|G = F]$$
$$= E[\psi^{M} - \psi^{F}|G = F] + E[\psi^{M}|G = M] - E[\psi^{M}|G = F]$$



- 3.5% 4.5% of wage gap due to sorting; 0.3% 1.5% to bargaining
 - \bullet Overall wage gap: 23.4%, so $\approx 15\%$ of this sorting, $\approx 5\%$ bargaining
 - Mean premium for males: 15%. Implies $\gamma^F/\gamma^M \approx 0.9$

Alternative Estimation of γ^F/γ^M

• Can directly estimate slope of ψ^F to ψ^M by estimating:

$$\widehat{\psi^F} = (\gamma^F/\gamma^M)\widehat{\psi^M} + \eta$$

To avoid attenuation bias, CCK estimate this on firm group averages (equivalent to IV with group dummies; Angrist, 1991)

Alternatively, assuming

$$E[\overline{S}_{J(i,t)}|\overline{VA}_{J(i,t)},G(i)] = \kappa \underbrace{\max\{0,\overline{VA}_{J(i,t)} - \tau\}}_{\equiv E\overline{VA}_{J(i,t)}}$$

we have

$$\psi^{g}_{J(i,t)}=\pi^{g}E\bar{V}\!A_{J(i,t)}+\nu^{g}_{J(i,t)}$$
 where $\pi^{F}/\pi^{M}=\gamma^{F}/\gamma^{M}$

which we can esimate by OLS using cross-firm variation (i.e. comparing slopes from Figure 4), within-firm (time) variation, or both

Between-Firm Estimates of γ^F/γ^M

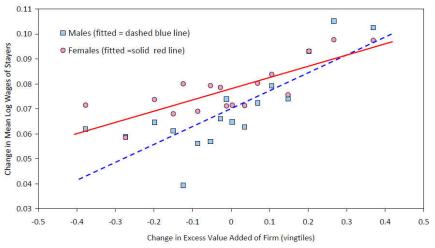
Table 5: Estimated Relationship Between Estimated Firm Effects and Mean Log Value-Added per Worker

		Regressions of Firm Effects on log(VA/L)					Ratio to Men:	Ratio to Men:
	Number Firms (1)	All Males (2)	All Females (3)	Females in "Female" Occ's (4)	Females in "Male" Occ's (5)		Females in "Female" Occ's (7)	Females in "Male" Occ's (8)
1. Dual connected with VA/L	47,477	0.156 (0.006)	0.137 (0.006)			0.879 (0.031)		
2. Dual connected, with VA/L and females in "female" occupations	42,667	0.155 (0.006)	0.136 (0.006)	0.136 (0.007)		0.879 (0.032)	0.875 (0.043)	
2. Dual connected, with VA/L and females in "male" occupations	14,638	0.138 (0.008)	0.128 (0.008)		0.129 (0.009)	0.924 (0.048)		0.933 (0.049)

Notes: Columns 2-5 report coefficients of mean log value-added per worker in excess of 2.4 in regression models in which the dependent variables are the estimated firm effects for the gender/occupation group identified in the row headings. All specifications include a constant. Models are estimated at the firm level, weighted by the total number of male and female workers at the firm. Ratio estimates in columns 6-8 are obtained by IV method -- see text. Standard errors in parentheses.

Within-Firm Estimates of γ^F/γ^M

Figure 6: Changes in Excess Value Added and Changes in Wages of Stayers, 2006-2009



Courtesy of David Card, Ana Rute Cardoso, and Patrick Kline. Used with permission.

ullet Ratio of slopes (either OLS or instrumented by lags) : pprox 0.9

Takeaways

- A simple, relatively transparent way of assessing differential bargaining over wage premiums as an explanation for the gender wage gap
 - Careful description of the data and identifying assumptions
 - Key result obtained by a number of different methods (all clearly presented and transitioned between - really a pleasure to read!)
- \bullet Female employees receive $\approx 90\%$ of wage premiums earned by men, while also being more likely to work at less productive firms
- Natural next question: how do we interpret these reduced-form facts?
 - "Nice girls don't ask" hypothesis? (Babcock and Laschever, 2003)
 - Taste-based/statistical discrimination?
 - Monopsonistic wage-setting with different elasticities of labor supply? (Manning, 2003; Barth and Dale-Olsen, 2009)
 - Differental preferences over job flexibility? (Goldin, 2014)

MIT OpenCourseWare http://ocw.mit.edu

14.662 Labor Economics II

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.