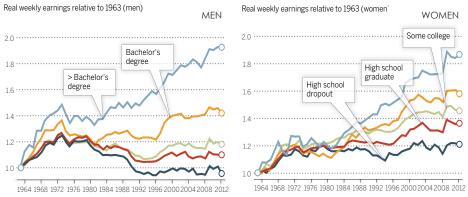

14.662 Recitation 3

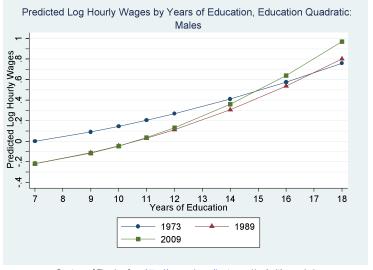
The Task Model

Peter Hull

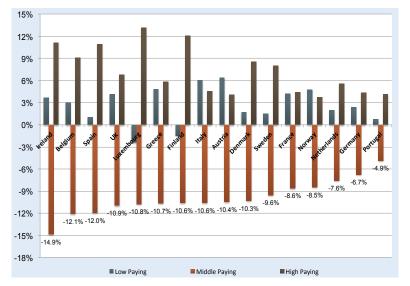
Spring 2015


1. Wage inequality has risen less than predicted

Courtesy of Daron Acemoglu and David Autor. License: CC.


2. Real wages have fallen for some education groups

Changes in real wage levels of full-time U.S. workers by sex and education, 1963–2012


© American Association for the Advancement of Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

3. The returns to education have "convexified"

 $Courtesy\ of\ Elsevier,\ Inc.,\ http://www.sciencedirect.com.\ Used\ with\ permission.$

4. Occupations and wages have "polarized"

Simplified Model (Acemoglu and Zilibotti, 2001)

• Unique final good produced by a continuum of tasks $i \in [0,1]$:

$$Y = \exp \int_0^1 \ln y(i) di$$

and a fixed, inelastic supply of H and L workers

Suppose

$$y(i) = (1-i)A_L I(i) + iA_H h(i)$$

I(i), h(i): amount of high-, low-skilled labor set to task i

- Key questions:
 - How are tasks assigned?
 - What are equilibrium wages?
 - What are assignment/wage comparative statics for H, L, A_H , A_I ?

Equilibrium Task Assignment

- In eq'm there exists I s.t. I(i) = 0 for all i > I and h(i) = 0 for all i < I
 - I an (endogenous) equilibrium object
- All *i* < *I* tasks must pay the same wage:

$$(1-i)A_Lp(i) = (1-i')A_Lp(i')$$

Equal-share Cobb-Douglas technology implies:

$$p(i)y(i) = p(i')y(i')$$

$$\implies (1-i)A_L p(i)I(i) = (1-i')A_L p(i')I(i')$$

$$\implies I(i) = I(i') = L/I$$

• By the same logic, h(i) = H/(1-I)

Characterizing the Equilibrium

• At I, firm must be indifferent between hiring L and H workers

$$(1-I)A_L \frac{L}{I} = IA_H \frac{H}{1-I}$$
$$(1-I)\sqrt{A_L L} = I\sqrt{A_H H}$$
$$\implies I = \frac{\sqrt{A_L L}}{\sqrt{A_H H} + \sqrt{A_L L}}$$

Wages equal marginal products:

$$w_{L} = (1 - i)p(i)A_{L}, w_{H} = ip(i)A_{H}$$

$$\implies w_{L} \frac{L}{I} = w_{H} \frac{H}{1 - I}$$

$$\frac{w_{H}}{w_{L}} = \frac{1 - I}{I} \frac{L}{H} = \sqrt{\frac{A_{H}L}{A_{L}H}}$$

What's New with Tasks?

$$\frac{w_H}{w_L} = \frac{1 - I}{I} \frac{L}{H}$$

Suppose instead Y is Cobb-Douglas in L and K:

$$Y = L^{\alpha}H^{1-\alpha}$$

$$\implies w_{H} = (1-\alpha)(Y/H)$$

$$w_{L} = \alpha(Y/L)$$

$$\frac{w_{H}}{w_{L}} = \frac{1-\alpha}{\alpha}\frac{L}{H}$$

- With tasks " α " (low-skill labor share) is "endogenous" reacts to supply and technology
- As we'll see this can lead to different (perhaps more realistic) comparative statics

General Setup (Acemoglu and Autor, 2011)

• Three labor types: L, M, and H

$$y(i) = A_L \alpha_L(i)I(i) + A_M \alpha_M(i)M(i) + A_H \alpha_H(i)H(i)$$

- $\alpha_L(i)/\alpha_M(i)$, $\alpha_M(i)/\alpha_H(i)$ continuously differentiable and strictly decreasing in i
- As before,

$$\frac{w_H}{w_M} = \left(\frac{1 - I_H}{I_H - I_L}\right) \left(\frac{H}{M}\right)^{-1}$$

$$\frac{w_M}{w_L} = \left(\frac{I_H - I_L}{I_L}\right) \left(\frac{M}{L}\right)^{-1}$$

Task Model Comparative Statics "Bingo"

	∂Ін	∂I_L	$\partial \frac{I_H}{I_L}$	$\partial \frac{w_H}{w_M}$	$\partial \frac{w_H}{w_L}$	$\partial \frac{w_M}{w_L}$
∂Н						
∂М						
∂L						
$\frac{\partial A_H}{\partial A_M}$						
∂A_M						
∂A_L						

• +, -, or ?

Task Model Bingo: Supply and Tasks

	∂I_H	∂I_L	$\partial \frac{I_H}{I_L}$	$\partial \frac{w_H}{w_M}$	$\partial \frac{w_H}{w_L}$	$\partial \frac{w_M}{w_L}$
∂Н	_	-	_			
∂М	+	-	+			
∂L	+	+	_			
∂A_H						
$\frac{\partial A_H}{\partial A_M}$						
∂A_L						

Increased supply expands set of tasks performed

Task Model Bingo: Technology and Tasks

	дI _Н	∂I_L	$\partial \frac{I_H}{I_L}$	$\partial \frac{w_H}{w_M}$	$\partial \frac{w_H}{w_L}$	$\partial \frac{w_M}{w_L}$
∂Н	_	_	_			
∂М	+	1	+			
∂L	+	+	_			
∂Ан	_	_	_			
∂A_M ∂A_L	+	_	+			
∂A_L	+	+	_			

• Technology increases effective supply; same effects on assignment

Task Model Bingo: Supply and Wages

	∂I _H	∂I_L	$\partial \frac{I_H}{I_L}$	$\partial \frac{w_H}{w_M}$	$\partial \frac{w_H}{w_L}$	$\partial \frac{w_M}{w_L}$
∂Н	_	-	_	_	_	-
∂М	+	_	+	+	?	_
∂L	+	+	_	+	+	+
∂A_H	_	-	_			
∂A_M	+	_	+			
∂A_L	+	+	_			

• Demand curves are downward-sloping

Task Model Bingo: Technology and Wages

	∂Ін	∂I_L	$\partial \frac{I_H}{I_L}$	$\partial \frac{w_H}{w_M}$	$\partial \frac{w_H}{w_L}$	$\partial \frac{w_M}{w_L}$
∂Н	_	_	_	_	_	_
∂М	+	_	+	+	?	_
∂L	+	+	_	+	+	+
∂A_H	_	1	_	+	+	-
∂A_M	+	-	+	_	?	+
∂A_L	+	+	_	+	_	_

SBTC shrinks med/low workers task set; increases skill premium

Middle-Skill Technology and Wages

• For $\beta_H(I) \equiv \ln \alpha_M(I) - \ln \alpha_H(I)$ and $\beta_L(I) \equiv \ln \alpha_L(I) - \ln \alpha_M(I)$:

$$\begin{split} \frac{\partial \ln(w_H/w_L)}{\partial \ln A_M} & \leqslant 0 \quad \text{and} \\ \frac{\partial \ln(w_H/w_L)}{\partial \ln M} & \leqslant 0 \\ \iff & \mid \beta_H'(I_H)(1-I_H) \mid \leqslant \mid \beta_L'(I_L)I_L \mid \end{split}$$

- When $\beta'_L(I_L)$ is relatively high, low skill workers have a strong comparative advantage for tasks below I_L .
- Effective medium-skill workers will not be displacing low-skill workers as much as they displace high-skill workers
- w_H/w_L must decline.

What Does the Task Model Buy Us?

Acemoglu and Autor (2011) show it's possible to have

$$\frac{\partial w_M}{\partial A_H} < 0$$

That is, factor-augmenting increase in productivity can reduce the *level* of wages for other groups (by shrinking the set of assigned tasks)

Machines replacing subset of medium-skill tasks can lead to (Prop 4)

$$\frac{\partial w_H}{\partial w_M}, \frac{\partial w_H}{\partial w_L} > 0$$

$$\frac{\partial w_M}{\partial w_L} < 0$$

which could explain job/wage polarization

Problem Set #1

• Questions?

MIT OpenCourseWare http://ocw.mit.edu

14.662 Labor Economics II

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.