
MIT OpenCourseWare
http://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Introduction

Rob Miller
Fall 2008

© Robert Miller 2008

Why We Use Java in 6.005
safety
¾static typing catches errors before you even run (unlike Python)
¾strong typing and memory safety catch errors at run time (unlike C/C++)

ubiquityubiquity
¾ Java is widely used in industry and education

libraries
¾ Java has libraries and frameworks for many things

tools
¾excellent, free tools exist for Java development (like Eclipse)

it’s good to be multilingual
¾knowing two languages paves the way to learning more (which you should)

why we regret using Java...
¾wordy, inconsistent, freighted with legacy baggage from older languages,

no interpreter, no lambda expressions, no continuations, no tail recursion,
... © Robert Miller 2007

Today’s Topics
getting up to speed with Java
¾note that programming experience is a prerequisite for 6.005
¾we assume you’ve used Python
¾¾ these initial lectures will show the Java way to do things you should already these initial lectures will show the Java way to do things you should already

be able to do in Python (or some other language)

what makes software “good”
¾whether it works isn’t the only consideration

© Robert Miller 2007

Hailstone Sequences
start with some positive integer n
¾ if n is even, then next number is n/2

¾ if n is odd, then next number is 3n+1

¾¾repeat these moves until you reach 1repeat these moves until you reach 1

examples
2, 1 7, 22, 11, 34, 17, 52, 26, 13, 40, ...?
3, 10, 5, 16, 8, 4, 2, 1 2n, 2n-1 , ... , 4, 2, 1
4, 2, 1
5, 16, 8, 4, 2, 1
¾why “hailstone”? because hailstones in clouds also bounce up and down ¾why hailstone ? because hailstones in clouds also bounce up and down

chaotically before finally falling to the ground

let’s explore this sequence
¾open question: does every positive integer n eventually reach 1?

© Robert Miller 2007

1

Computing a Hailstone Sequence

Java Python
// hailstone sequence from n # hailstone sequence from n
while (n != 1) { while n != 1:
if (n % 2 == 0) { if n % 2 == 0:

n = n / 2; n = n / 2
} else { else:

n = 3 * n + 1; n = 3 * n + 1
}

}

© Robert Miller 2007

Computing a Hailstone Sequence

int n = 3;

System.out.println(n);

if (n % 2 == 0) {

n = n / 2;

} else {

n = 3 * n + 1;

while (n != 1) { declares the integer
variable n

prints a value to the console
(useful for debugging)

}

}

System.out.println(n);

Java Syntax
statement grouping
¾curly braces surround groups of statements
¾semicolons terminate statements
¾¾ indentation is technically optional but essential for human readersindentation is technically optional but essential for human readers

comments
¾ // introduce comment lines

¾ /* ... */ surround comment blocks

control statements

¾while and if require parentheses around their conditions

operators

¾mostly common with Python (+, -, *, /, <, >, <=, >=, ==)

¾ != means “not equal to”

¾ ! means “not” , so n!=1 is the same as !(n == 1)

¾ the % operator computes remainder after division

© Robert Miller 2007

Declarations and Types
variables must be declared before being used

¾a declaration includes the type of the variable

¾ two kinds of types, primitive and object

¾¾primitive types includeprimitive types include

• int (integers up to +/- 2 billion)
• long (integers up to +/- 263)
• boolean (true or false)
• double (floating-point numbers)
• char (characters)

¾objject types include
yp
• String (a sequence of characters, i.e. text)

¾you can define new object types (using classes), but you can’t define new
primitive types

© Robert Miller 2007 © Robert Miller 2007

2

declares the integer
variable n

prints a value to the console
(useful for debugging)

int n =

Static Typing
static vs. dynamic

¾static or compile-time means “known or done before the program runs”

¾dynamic or run-time means “known or done while the program runs”

Java has static typing
¾expressions are checked for type errors before the program runs
¾Eclipse does it while you’re writing, in fact

int n = 1;

n = n + “2”; // type error – Eclipse won’t let you run the program

¾¾P thPython hh as dd ynamiic tt ypiing – itit wou

ld

ldn’t ’t compllaiin abboutt n + + “2” “2” until it til it
reaches that line in the running program

© Robert Miller 2007

Length of a Hailstone Sequence
/*
* Returns the number of moves of the hailstone sequence

public static int hailstoneLength(int n) {

int moves = 0;

while (n != 1) {

* needed to get from n to 1.

type of value returned
y the method by the method

*/

if (isEven(n)) {

n = n / 2;

} else {

argument(s) of the method

n = 3 * n + 1;

}

++moves;

}

return moves;

}

common operator, equivalent to
moves = moves + 1

© Robert Miller 2007

A Complete Java Program

public class Hailstone {

public static void main(String[] args) {
 3;

all Java code must be
contained within a class

a Java program starts by
running the main
method of a class

while (n != 1) {

System.out.println(n);

if (n % 2 == 0) {

n = n / 2;

} else {

n = 3 * n + 1;

}

}

System.out.println(n);

}

}

we’ll talk about what
public and static mean
in the next lecture; for
now, we’ll just use them
on all methods

© Robert Miller 2007

More Method Definitions
/*
* Returns true if and only if n is even.

*/

public static boolean isEven(int n) {

return n % 2 == 0;

}

/*
* Start of the program.

*/

public static void main(String[] args) { ... }

¾void means the method has no return type (so no return statement is

required)

¾String [] is an array of String objects (in this case, these strings are the

arguments given to the program on the Unix/Windows/Mac command
line)

© Robert Miller 2007

3

all Java code must be
contained within a class

a Java program starts by
running the main
method of a class

we’ll talk about what
public and staticmean
in the next lecture; for
now, we’ll just use them
on all methods

by the method

argument(s) of the method

common operator, equivalent to
moves = moves + 1

= *

Recursive Method

public static int hailstoneLength(int n) {

if (n == 1) {

return 0;

} else if (isEven(n)) {

return 1 + hailstoneLength(n/2);

} else {

return 1 + hailstoneLength(3*n + 1);

}

}

recursive cases

© Robert Miller 2007

Strings
¾a String is an object representing a sequence of characters

• returning a List of integers would be better, but we need more
machinery for Java Lists, so we’ll defer it

¾stringgs can be concatenated usingg +

• “8” + “4” Î “84”
•	 String objects are immutable (never change), so concatenation

creates a new string, it doesn’t change the original string objects
¾String objects have various methods

String seq = “4,2,1”;
seq.length() Î 5

seq.ch AharAt(0) (0) Î ‘4’
Î ‘4’

seq.substr(0, 2) Î “4,”

¾use Google to find the Java documentation for String

• learn how to read the Java docs, and get familiar with them

© Robert Miller 2007

Hailstone Sequence as a String
/*
* Returns the hailstone sequence from n to 1
* as a comma-separated string.
* e.g. if n=5, then returns "5,16,8,4,2,1".
*/

public static String hailstoneSequence(int n) {
...

}

© Robert Miller 2007

Hailstone Sequence as a String
/*
* Returns the hailstone sequence from n to 1
* as a comma-separated string.
* e.g. if n=5, then returns "5,16,8,4,2,1".

*//

public static String hailstoneSequence(int n) {

String seq = n;

String seq = String.valueOf(n);

Type error! Java requires
you to convert the integer
into a String object. This is
a compile‐time error.

while (n != 1) {

if (isEven(n)) {

n = n / 2;

} else {

n = 3 * n + 1;

}

return seq;

}

n 3 n + 1;

}

seq +=

common shorthand for s = s + “,” + n

But the + operator converts
numbers to strings automatically

"," + n;

© Robert Miller 2007

4

recursive cases

 b

Type error! Java requires
you to convert the integer
into a String object. This is
a compile‐time error.

But the + operator converts
numbers to strings automatically

common shorthand for s = s + “,” + n

base case

=

// sets a value

Wha
this

Hailstone Sequence as an Array
/**
* Returns the hailstone sequence starting from n as an
* array of integers, e.g. hailstoneArray(8) returns
* the length-4 array [8,4,2,1].

*//

public static int[] hailstoneArray(int n) {

...

}

© Robert Miller 2007

Hailstone Sequence as an Array
/**
* Returns the hailstone sequence starting from n as an
* array of integers, e.g. hailstoneArray(8) returns
* the length-4 array [8,4,2,1].

*//

public static int[] hailstoneArray(int n) {

int[] array = new int[hailstoneLength(n)+1];

int i = 0;
while (n != 1) {

array[i] = n;
++i;
if (isEven(n)) {

n = n / 2; n n / 2;
} else {

n = 3 * n + 1;
}

}

t happens if you omit pp y
“+1”? The array is too

short, and Java produces a
runtime error when you try
to write the last number.

array[i] = n;

return array;

} © Robert Miller 2007

Arrays
array is a fixed-length sequence of values
¾base type of an array can be any type (primitive, object, another array type)

int[] intArray;
char[] charArray;char[] charArray;

String[] stringArray;

double[][] matrix; // array of arrays of floating-point numbers

¾ fresh arrays are created with new keyword

intArray = new int[5]; // makes array of 5 integers

¾operations on an array

intArray[y[0]] = 200;;

intArray[0] Î 200 // gets a value

intArray.length Î 5 // gets array’s length

¾unlike a String, an array’s elements can be changed

¾but once created, an array’s length cannot be changed

• so it’s not like a Python list – a Java array can’t grow or shrink
© Robert Miller 2007

Maximum Value of an Array
/**
* Returns the maximum value of an array of
* positive integers.
* Returns 0 if the array is empty.

*/

public static int maxValue(int[] array) {

int max = 0;

for (int i = 0; i < array.length; ++i) {

if (array[i] > max) max = array[i];

}

return max;

}

© Robert Miller 2007

5

What happens if you omit
this “+1”? The array is too
short, and Java produces a
runtime error when you try
to write the last number.

The for loop is commonly used for
ierat ing through a collectioniterating through a collection.

for (init; test; update) {... }
is roughly equivalent to
init; while (test) { ... ; update }

What Makes “Good” Software
easy to understand
¾well chosen, descriptive names

¾clear, accurate documentation

¾¾ indentationindentation

ready for change
¾nonredundant: complex code or important design decisions appear in only

one place
¾“decoupled”: changeable parts are isolated from each other

safe from bugs
¾¾static typing helps find bugs before you runstatic typing helps find bugs before you run

¾ testable in small parts

¾no hidden assumptions waiting to trap you or another programmer later

© Robert Miller 2007

Summary
basic Java
¾control statements, expressions, operators
¾ types and declarations
¾¾methodsmethods
¾strings
¾arrays

properties of good software
¾easy to understand

¾ready for change

¾¾safe from bugssafe from bugs

A Larger View of Good Software
correct
¾gets the right answers

economical
¾¾runs ff ast, uses miiniimall resources, dd oesn’’t cost muchh to prodduce

dependable
¾safe from bugs

maintainable
¾easy to understand and ready for change

usable
¾has an effective user interface

secure
¾safe from malicious attacks

... all these properties matter in practice
¾sometimes supporting each other, sometimes in conflict

© Robert Miller 2007

About 6.005
lecturers
¾Daniel Jackson and Rob Miller

teaching assistants
¾H ld C M G ld E k K Cl Si K Y¾Harold Cooper, Max Goldman, Eunsuk Kang, Clayton Sims, KuatYessenov

lab assistants
¾TBD

© Robert Miller 2007 © Robert Miller 2007

6

•

Objectives
what you should expect to get out of this course

fundamental programming skills
¾how to specify, design, implement and test a program

¾proficiency in Java and use of Java APIs

¾use of standard development tools (Eclipse, SVN, JUnit)

engineering sensibilities
¾capturing the essence of a problem

¾ inventing powerful abstractions

¾appreciating the value of simplicity

¾awareness of risks and fallibilities

cultural literacy
¾ familiarity with a variety of technologies (http, postscript, sockets, etc)

© Robert Miller 2007

Your Responsibilities
assignments

¾ three 1-week explorations

• writing a program we’ll use as a lecture example

¾ three 2 week problem sets
¾ three 2-week problem sets
• both written and programming components

¾ three 2-week projects

• in rotating teams of 3 people

¾ three 3-hour project labs, one for each project

• project labs prepare you to get started on the project

meetingsmeetings
¾ two lectures each week (Mon,Wed, sometimes Fri)
¾one recitation each week
¾project meetings with your team members and teaching staff

• lecture time will often be made available for these meetings

© Robert Miller 2007

Intellectual Structure
three paradigms
¾state machine programming

¾symbolic programming

¾object based programming
¾object-based programming

pervasive themes
¾models and abstractions

¾ interfaces and decoupling

¾analysis with invariants

incremental approach
¾concepts introduced as needed
¾deepening sophistication as ideas are revisited

© Robert Miller 2007

Grading Policy
collaboration
¾projects in teams of 3: must have different teams for each project
¾problem sets and explorations are done individually

• discussion permitted but writing or code may not be shareddiscussion permitted but writing or code may not be shared

use of available resources
¾can use publicly available code, designs, specs
¾cannot reuse work done in 6.005 by another student (in this or past term)
¾cannot make your work available to other 6.005 students

grade breakdown
¾ j 40%¾projectts 40%

¾problem sets 30%

¾explorations 20%

¾participation 10%

© Robert Miller 2007

7

What You Should Do
today
¾sign up for a recitation on the 6.005 web site

tomorrow
¾ h i b i d¾go to the reciitation you’’ve been assigned to

Friday
¾read Lab 1 before coming to lab

¾go to your assigned lab location for Lab 1

© Robert Miller 2007

8

