MIT OpenCourseWare
lhttp://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2008

For information about citing these materials or our Terms of Use, visit: [http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Introduction

Rob Miller
Fall 2008

© Robert Miller 2008

getting up to speed with Java
» note that programming experience is a prerequisite for 6.005
» we assume you've used Python

» these initial lectures will show the Java way to do things you should already
be able to do in Python (or some other language)

what makes software ‘“good”

» whether it works isn’t the only consideration

© Robert Miller 2007

safety

» static typing catches errors before you even run (unlike Python)

» strong typing and memory safety catch errors at run time (unlike C/C++)
ubiquity

» Java is widely used in industry and education

libraries

» Java has libraries and frameworks for many things

tools

» excellent, free tools exist for Java development (like Eclipse)

it’s good to be multilingual

» knowing two languages paves the way to learning more (which you should)
why we regret using Java...

» wordy, inconsistent, freighted with legacy baggage from older languages,

no interpreter, no lambda expressions, no continuations, no tail recursion,
© Robert Miller 2007

start with some positive integer n
» if n is even, then next number is n/2
» if n is odd, then next number is 3n+1

» repeat these moves until you reach |

examples
2,1 7,22,11,34,17,52,26, 13,40, ...7
3,10,5,16,8,4,2, | 274,21
4,2,1
5,16,8,4,2, 1

» why “hailstone”? because hailstones in clouds also bounce up and down
chaotically before finally falling to the ground

let’s explore this sequence

» open question: does every positive integer n eventually reach |?

© Robert Miller 2007

statement grouping

» curly braces surround groups of statements

» semicolons terminate statements

» indentation is technically optional but essential for human readers
comments

» Il introduce comment lines

» I* ... */ surround comment blocks

control statements

» while and if require parentheses around their conditions
operators

» mostly common with Python (+, -, %,/, <,>,<=,>= ==

» 1= means “not equal to”

»! means“not”,so n!=I is the same as !(n == |)

» the % operator computes remainder after division

© Robert Miller 2007

Java Python
// hailstone sequence from n # hailstone sequence from n
while (n 1= 1) { while n I= 1:
if(n%2==0){ ifn%2==0:
n=n/2; n=n/2
} else { else:
n=3%*n+1; n=3*n+1
3
}
© Robert Miller 2007
intn=3; < —————

while (n 1= 1) { \\7 declares the integer ‘
System.out.printin(n); é\ variable n

if (n%2==0){

n=n/2; \
} else { _ prints a value to the console
n=3*n+1; (useful for debugging)

}
¥

System.out.printin(n);

© Robert Miller 2007

variables must be declared before being used
» a declaration includes the type of the variable
» two kinds of types, primitive and object
» primitive types include

* int (integers up to +/- 2 billion)

* long (integers up to +/- 263)

* boolean (true or false)

* double (floating-point numbers)

* char (characters)
» object types include

* String (a sequence of characters, i.e. text)

» you can define new object types (using classes), but you can’t define new
primitive types

© Robert Miller 2007

static vs. dynamic
» static or compile-time means “known or done before the program runs”
» dynamic or run-time means “known or done while the program runs”

Java has static typing
» expressions are checked for type errors before the program runs
» Eclipse does it while you're writing, in fact

intn=1;

n =n +"“2";// type error — Eclipse won’t let you run the program

» Pythony, asq'ynamic; yping — it woulan’t complain about n + “2” until it
reaches that line in the running program

© Robert Miller 2007

public class Hailstone { ﬁ_{ all Java code must be
public static void main(String[] args) contained within a class

while (n 1= 1) {

System.out.printin(n);
iIT(h%2==0){

a Java program starts by
running the main

/*
* Returns the number of moves of the hailstone sequence

* needed to get from n to 1.

*/
public static irvnrt hai IstoneLength(int n) |2y the method
int moves = 0;
while (n 1= 1) { /\‘
if (isEven(n)) { argument(s) of the method
n=n}/2;
} else {

n=3%*n+1;
}

++moves; < .
3 X+ common operator, equivalent to

moves = moves + 1
return moves;

© Robert Miller 2007

n=n/2; method of a class
} else {
n=3%*n+1;
}
3 we’ll talk about what
System.out.printin(n); public and static mean
b in the next lecture; for
3} now, we'll just use them
on all methods
© Robert Miller 2007
/*
* Returns true if and only if n is even.
*/
public static boolean isEven(int n) {
return n % 2 == 0;
}
/*
* Start of the program.
*/
public static void main(String[] args) { ... }

» void means the method has no return type (so no return statement is
required)

» String [] is an array of String objects (in this case, these strings are the
arguments given to the program on the Unix/Windows/Mac command

line)
© Robert Miller 2007

public static int hailstoneLength(int n) {
if (n==1) {
return O;
} else if (isEven(n)) {
return 1 + hailstoneLength(n/2);
} else {
return 1 + hailstoneLength(3*n + 1);

base case

}

© Robert Miller 2007

recursive cases

/*
* Returns the hailstone sequence from n to 1
* as a comma-separated string.
* e.g. 1f n=5, then returns "5,16,8,4,2,1".
4

public static String hailstoneSequence(int n) {

}

© Robert Miller 2007

» a String is an object representing a sequence of characters

* returning a List of integers would be better, but we need more
machinery for Java Lists, so we’ll defer it
» strings can be concatenated using4
° “87+%4” 84"
* String objects are immutable (never change), so concatenation
creates a new string, it doesn’t change the original string objects
» String objects have various methods
String seq =“4,2,17;
seq.length() 25
seq.charAt(0) =>4
seq.substr(0,2) =>4
» use Google to find the Java documentation for String
* learn how to read the Java docs, and get familiar with them

© Robert Miller 2007

/*
* Returns the hailstone sequence from n to 1
* as a comma-separated string.

* e.g. if n=5, then returns "5,16,8,4,2,1".
*/
public static String hailstoneSequence(int n) {
String—seg—=—";—

String seq = String.valuel

Type error! Java requires
you to convert the integer
into a String object. This is
a compile-time error.

while (n = 1) {
iT (iseven(n)) {
n=n}/2;
} else {

n-3*n+1;

¥

seq += "," + nj*—— | Butthe + operator converts
¥ numbers to strings automatically
return seq;

“n

\{ common shorthand fors=s+“” +n

© Robert Miller 2007

S
* Returns the hailstone sequence starting from n as an
* array of integers, e.g. hailstoneArray(8) returns

* the length-4 array [8,4,2,1].

*/

public static int[] hailstoneArray(int n) {

¥

© Robert Miller 2007

array is a fixed-length sequence of values
» base type of an array can be any type (primitive, object, another array type)
int[] intArray;
char[] charArray;
String[] stringArray;
double[][] matrix; // array of arrays of floating-point numbers

» fresh arrays are created with new keyword

intArray = new int[5]; /I makes array of 5 integers
» operations on an array

intArray[0] = 200; /I sets a value

intArray[0] = 200 /] gets a value

intArray.length = 5 /I gets array’s length

» unlike a String, an array’s elements can be changed
» but once created, an array’s length cannot be changed

* soit’s not like a Python list —a Java array can’t grow or shrink
© Robert Miller 2007

J**
* Returns the hailstone sequence starting from n as an
* array of integers, e.g. hailstoneArray(8) returns
* the length-4 array [8,4,2,1].

*/
public static int[] hailstoneArray(int n) {
int[] array = new int[hailstoneLength(n)+1];
int i =0;
while (n 1= 1) {
array[i] = n;

++1i;
if (iskEven(n)) {

n-n7s2: What happens if you omit
¥ else { this “+1”? The array is too

short, and Java produces a
runtime error when you try
to write the last number.

n=3%*n+1;
¥
3
array[i] = n;

return array;
© Robert Miller 2007

/**

* Returns the maximum value of an array of

* positive integers.

* Returns 0 if the array is empty.

*/

public static int maxValue(int[] array) {
int max = 0;
for (int i = 0; i < array.length; ++i) {

iT (array[i] > max) max = array[i];

}

The for loop is commonly used for
return max;

itepating through a collection.
b for (init; test; update){... }
is roughly equivalent to
init; while (test) { ... ; update }

© Robert Miller 2007

easy to understand

» well chosen, descriptive names
» clear; accurate documentation
» indentation

ready for change

» nonredundant: complex code or important design decisions appear in only
one place

» “decoupled”: changeable parts are isolated from each other
safe from bugs

» static typing helps find bugs before you run

» testable in small parts

» no hidden assumptions waiting to trap you or another programmer later

© Robert Miller 2007

correct

» gets the right answers

economical

» runs¢ ast, uses minimal resources,q 'oesn’t cost much to produce
dependable

» safe from bugs

maintainable

» easy to understand and ready for change

usable

» has an effective user interface

secure

» safe from malicious attacks

... all these properties matter in practice

» sometimes supporting each othkep sometimes in conflict
© Robert Miller 2007

basic Java

» control statements, expressions, operators
» types and declarations

» methods

» strings

» arrays

properties of good software

» easy to understand

» ready for change

» safe from bugs

© Robert Miller 2007

lecturers

» Daniel Jackson and Rob Miller

teaching assistants

» Harold Cooper, Max Goldman, Eunsuk Kang, Clayton Sims, Kuat Yessenov
lab assistants

»TBD

) Robert Miller 2007

what you should expect to get out of this course

fundamental programming skills

» how to specify, design, implement and test a program

» proficiency in Java and use of Java APls

» use of standard development tools (Eclipse, SVN, JUnit)
engineering sensibilities

» capturing the essence of a problem

» inventing powerful abstractions

» appreciating the value of simplicity

» awareness of risks and fallibilities

cultural literacy

» familiarity with a variety of technologies (http, postscript, sockets, etc)

© Robert Mille

three paradigms

» state machine programming
» symbolic programming

» object-based programming

pervasive themes

» models and abstractions
» interfaces and decoupling
» analysis with invariants

incremental approach
» concepts introduced as needed

» deepening sophistication as ideas are revisited

© Robert Miller 2007

assignments
» three |-week explorations
* writing a program we’ll use as a lecture example
» three 2-week problem sets
* both written and programming components
» three 2-week projects
* in rotating teams of 3 people
> three 3-hour project labs, one for each project
* project labs prepare you to get started on the project
meetings
» two lectures each week (Mon,Wed, sometimes Fri)
» one recitation each week
» project meetings with your team members and teaching staff
* lecture time will often be made available for these meetings

© Robert Miller 2007

collaboration
» projects in teams of 3: must have different teams for each project
» problem sets and explorations are done individually

- discussion permitted but writing or code may not be shared
use of available resources
» can use publicly available code, designs, specs

» cannot reuse work done in 6.005 by another student (in this or past term)

» cannot make your work available to other 6.005 students
grade breakdown

» projects 4U%

» problem sets 30%

» explorations 20%

» participation 10%

) Robert Miller 2007

today

» sign up for a recitation on the 6.005 web site
tomorrow

» go to the recitation you’ve been assigned to
Friday

» read Lab | before coming to lab

» go to your assigned lab location for Lab |

© Robert Miller 2007

