MIT OpenCourseWare
lhttp://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2008

For information about citing these materials or our Terms of Use, visit: [http://ocw.mit.edu/terms.


http://ocw.mit.edu
http://ocw.mit.edu/terms

Classes

Rob Miller
Fall 2008

© Robert Miller 2008

object-oriented programming in Java
» exceptions

» classes

» subclassing

© Robert Miller 2007

1. Write the method signature
(name, return type, arguments

*/
public static String fetch(String urlString) {

2. Write a specification (a comment
that defines what it returns, any side-
effects, and assumptions about the

¥ arguments.

3. Write the method body so that it conforms to your
specification. (Revise the signature or specification if
you discover you can’t implement it!)

© Robert Miller 2007

import java.net.URL; imports the class URL from
the java.net package

/*
* Returns the contents of the web page identified
* by urlString. e.g. fetch("http://www.mit.edu')
* returns the MIT home page as a string of HTML.
*/

public static String fetch(String urlString) {
URL url = new URL(urlString);

constructs a new URL object

© Robert Miller 2007




Java classes are arranged in packages

» java.lang.String

» java.lang.Math

» java.net.URL

Import statements at top of Java file bring in the classes
you need

» import java.net.URL;

» import java.net.*;

» java.lang.* package is imported automatically, so we don’t have to do this
with String or Math, for example

© Robert Miller 2007

Exceptions are abnormal return conditions from a
method
» Instead of returning a value normally, the method throws an exception
» Exceptions usually indicate error conditions, but not necessarily
» Exceptions are objects. Usually just have a message, but can carry other
data as well
Throwing an exception
» throw statement throws an exception object
throw new MalformedURLException(“bad URL:* + urlString);

> throw is like return — the method immediatelygo, ps, but instead of
returning a value, it propagates the exception

© Robert Miller 2007

public static String fetch(String urlString) {
try {

URL url = new URL(urlIString); | catch the exception and deal

EIU// with it
} catch (MaiformedURLException e) {

System.out.printIn(“Badly formed URL: “ + urlString);
e.printStackTrace(); //
System.exit(0);

Exiting the whole program is generally not useful. Catching the exception
makes sense when there’s something fetch() can do to fix the problem.

3

public static String fetch(String urlString)
throws MalformedURLException {

URL url = new URL(urlString);
declare the exception in the
method signature, so that
This is probably the right thing to do in this it’s passed on to the caller of
case, because it’s the caller’s fault for passing a fetch() to deal with it
nonsensical URL. fetch() can’t fix it.

© Robert Miller 2007

public static String fetch(String urlString)
throws MalformedURLException, I0Exception {
URL url = new URL(urlString);

// open a stream from the web server
InputStream input = url.openStream();
InputStreamReader reader = new InputStreamReader(input);

// create a stream that appends data together into a String
StringWriter writer = new StringWriter();

// copy from the web server stream to the string stream
// (defined in a few slides)

copyStream(reader, writer);

// return the string we created
return writer.toStringQ);

© Robert Miller 2007



http:java.net.*;

Byte is an 8-bit value

» Older programming systems used 7-bit (ASCII) or 8-bit character sets,
which could represent at most 256 different characters

» The multilingual Web demands a lot more!

» But network connections and files are still generally represented as a
sequence of 8-bit byte values

» java.io.InputStream and java.io.OutputStream are streams of bytes

Char is a 16-bit value

» Java characters are Unicode characters

» Unicode is an extension of ASCII), which has thousands of characters
(including Latin alphabets, Greek, Cyrillic, Chinese/Japanese/Korean
characters, symbols, accents, etc.)

» java.lang.String is a sequence of Unicode characters, and java.io.Reader and
java.io.Writer are streams of Unicode characters

> If it’s human-readable text, use Unicode; if it’s binary data (like an image)
use bytes

© Robert Miller 2007

/*
* Copies all data from the "from™ stream to
* the "to" stream, then closes both streams.
* Throws 10Exception if any error occurs.
*/
public static void copyStream(Reader from, Writer to)
throws 10Exception {
char[] buffer = new char[10000];
// any size buffer would work, but bigger
// performs better
while (true) {
int n = from.read(buffer);
if (n == -1) break; // “from” stream is done

to.write(buffer, 0, n);

} mark the end of the stream and free

reader.closeQ); _ | upresources. But will the streams

writer.close(Q); always be closed in this code?

© Robert Miller 2

It’s important to close the streams to

public static void copyStream(Reader from, Writer to)
throws 10Exception {
try {
char[] buffer = new char[10000];
// any size buffer would work, but bigger
// performs better
while (true) {
int n = from.read(buffer);
if (n == -1) break; // at the end of the stream
to.write(buffer, 0, n);
}
} finally { <
reader.close();
writer.close();

finally clause is run no matter how
control leaves the try block — whether
by falling out normally or by throwing
} an exception

© Robert Miller 2007

public static String fetch(String urlString)
throws IformedURLException, 10Exception {
URL url = new URL(urlString);

return fetch(url); Overloaded methods have the
same name but different number

or types of arguments

public static String fetch(URL url)
throws 10Exception {
// open a connection to the web server
InputStream input = url.openStream();
InputStreamReader reader = new InputStreamReader(input);

b

Java automatically chooses which overloaded method to call based on the
types of the arguments you give it

Ffetch(“http://www.mit.edu™);

Ffetch(new URL(“http://www.mit.edu™));
© Robert Miller 2007




public class Page {
private URL url; <
private String content;

fields are variables stored in
the object

public Page(String urlString) throws MalformedURL... {
this.url = new URL(urlString);

this.content = m url);
3

~— constructors create new objects

public URL getURLQ) {<«—
return this.url; K methods are functions that

¥ / act on an object
public String getContent()

return this.content;

¥ Y

h this refers to the object itself in a method or constructor

© Robert Miller 2007

» public can be used anywhere in the program
public URL getURL(Q)

» private can be used only in this class
private URL url

Access control provides greater safety

» We want Page to be immutable (never changes once created). What if its
fields were public?
public URL url;
» Then it would be possible to change the field anywhere in the program,
and Page would no longer be immutable
Page p = new Page(“http://www.mit.edu™)
p-url = new URL(“http://www.google.com™);

» With private, it's much easier to guarantee that the url is never changed

© Robert Miller 2007

Another way to control changes to a field
» Fields and variables marked final may not be reassigned after initialization

» So Page could be kept immutable even if it’s public
public final URL url;

» It’s good practice to use final for any variable that shouldn’t be reassigned
(even local variables)

public static String fetch(final String urlString) throws ... {
final URL url = new URL(urlString);
final InputStream input = url.openStream();
final InputStreamReader reader = new InputStreamReader(input);
final StringWriter writer = new StringWriter();

© Robert Miller 2007

Web browsers store downloaded pages in a cache
» So that they don’t have download the page each time it’s used
» Let’s add a cache to the Page class

/* Returns the cached Page object for url,
or null if no such Page in the cache. */
privateﬁstatic Page getPageFromCache(URL url) { ... }

/* Stores page in the cache. */
private static void putPagelnCache(Page page) { -.. }

Returning an invalid value (like null) is one
way to signal an error condition. How else
could we have designed this method to
signal an error to its caller?

© Robert Miller 2007




» Fields and methods declared static are associated with the class itself,
rather than an individual object

* A static field has only one value for the whole program (rather than
one value per object)

— All objects of the class share that single copy of the static field
* A static method has no this object

* Static methods and fields are referenced using the class name (e.g.
Web.fetch()) rather than an object variable

* Some classes are purely containers for static code (e.g. Hailstone, Web,
java.lang.Math), and no objects of the class are ever constructed

» Fields and methods not declared static are called instance fields or
methods

» static final is commonly used for constants, e.g.:
public static final Pl = 3.14159;

© Robert Miller 2007

private static final Page[] cache = new Page[100];
private static int cachePointer = 0;
// index of next page to replace in the cache

private static Page getPageFromCache(URL url) {
for (Page p : cache) {
if (p = null && p.getURLQ) .equals(url)) return p;
}
return null; \// page not found
¥ why might p be null?
what happens if we don’t check?
private static void putPagelnCache(Page page) {
cache[cachePointer] = page;
++cachePointer;
it (cachePointer >= cache.length) cachePointer = 0O;

© Robert Miller 2007

public Page(URL url) throws I0Exception {
this.url = url;

Page p = getPageFromCache(url);

it (p '= null) {
this.content = p.content;

} else {
this.content = Web.fetch(url);
putPagelnCache(this);

© Robert Miller 2007

Exceptions

» Exceptions are abnormal returns from a method
» Exceptions can be caught or declared

Classes

» Members (fields, constructors, methods)

» Access control (public, protected, private)

» Static members

» Overloading

© Robert Miller 2007






