MIT OpenCourseWare
lhttp://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2008

For information about citing these materials or our Terms of Use, visit: [http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Subclassing and Interfaces

Rob Miller
Fall 2008

© Robert Miller 2008

More Java
» subclassing
» interfaces
» packages

» collections

© Robert Miller 2007

Let’s build on Page to get weather conditions
» Yahoo Weather feed: http://weather.yahooapis.com/forecastrss!p=02139
» Returns an XML page that looks like this:

...<title>Conditions for Cambridge, MA at 3:54 pm
EDT</title>. ..

<yweather:condition text="Cloudy"
date=""Sat, 06 Sep 2008 3:54 pm EDT"

Ci >de:"26" temp=""82"

Some string manipulation can extract the current weather condition:

Page p = new Page(new URL(“http://weather...=02139");

String yweather = Match.between(p.getContent(),
"<yweather:condition™, "/>");

String condition = Match.between(yweather,
“text=\"", \"");

© Robert Miller 2007

public class Match {
/* Finds the first match to pattern in string, and
* returns the rest of the string. e.g.,
* after("Your Name: Ben', "Name: ') => "Ben*
* Returns null if pattern never occurs in string. */
public static String after(String string, String pattern)

/* Finds the first match to pattern in string, and

* returns the part of the string before it.

* before(*hello/there™, /") => “hello*

* Returns null if pattern never occurs in string. */
public static String before(String content, String pattern)

e.g.,

/* Finds the first match to left in string, and

* the Ffirst match to right after that, and

* returns the substring between the two matches.

* e.g. between("'a bold word", "", *"") => "bold“
* Returns null if left...right never occurs in string.*/

public static String between(String content, String left,
String right) © Robert Miller 2007

public class Weather extends Page{ extends means Weather is a
private String condition; subclass of Page
private int temperature;

public Weather(String zipcode) throws I0Exception {
super(“'http://weather.yahooapis.com/forecastrss?p=*

+ zipcode); ,
3 <\{ super () calls the superclass’s constructor

public String getCondition() {
return condition;

} As a subclass of Page Weather
public int getTemperature() { inherits the methods and fields

return temperature; of Page: url, content, getURL(),
} getContent(), download()

© Robert Miller 2007

Subclassing creates a hierarchy
» Every class implicitly extends java.lang.Object, the root of the hierarchy
» So every class inherits methods from Object, e.g. equals() and toString()

java.Iang.Object_J

Page java.lang.String

java.net.URL

Weather J

© Robert Miller 2007

» A variable has a declared type at compile-time
» The variable refers to an object with an actual type at runtime
Actual type is either the same or a subclass of declared type

static (compile time) dynamic (run time)

Page p = new Page(“http://..”); p > Page object

p-getContent();
p = new Weather(“02139”); p = Weather object
p-getContent(); .
T . Weather has the same methods and fields
p-getTemperature(); that Page does (it inherits them), so it’s safe
] for p to refer to a Weather object at runtime

p

But Java’s static type checking won’t allow you to use a method or
field that isn’t in the declared type of the variable (Page), even if
it’s in the actual type at runtime (Weather).

© Robert Miller 2007

» protected fields and methods can be used in this class or any of its
subclasses
protected URL url;
protected String content;
* This would allow Weather to access the fields it inherits from Page
¢ But it can already access them through getURL() and getContent(), so
we won’t bother
» But let’s move Page’s downloading code into a protected method:
protected void download() throws I10Exception {
Page p = getPageFromCache(url);
iT (p '= null) {
this.content = p.content;
} else {
this.content = Web.fetch(url);
putPagelnCache(this);

} © Robert Miller 2007

public class Weather extends Page {

B Overriding provides a new body for an
N ; e inherited method
@override <

protected void download() throws I0Exception {
super .download(); \

super.method (...) calls the superclass’s
implementation of method

String yweather = Match.between(this.getContent(),
“<yweather:condition”, "/>");
this.condition = Match.between(content,
TEext\"T, \");
this.temperature = Integer.valueOf(Match.between(content,
“temp=\""", "\""));

Don’t confuse overloading (two methods in the same class with the same
name but different arguments) and overriding (a method implemented in
both superclass and subclass, with the same name and same arguments)

© Robert Miller 2007

The actual type of the object is used to select the
method body to call

static (compile time) dynamic (run time)

Page p = new Weather(“02139”); p - Weather object

p.download(); calls Weather’s download() method,
not Page’s

The declared type of the variable is irrelevant to method selection

declared type is used by static type checking, to ensure that the method
will exist at runtime

but actual type is used at runtime to select the method body to call
The location of the method call is also irrelevant to method selection

Page’s constructor has a call to download() in it. Which version of
download() will it call?

© Robert Miller 2007

What’s in Page’s cache now?
» Even though the cache’s declared type is Page[], at runtime it might contain
a mix of Page and Weather objects
» This is OK, because all those objects behave like Pages
» But what if we want to take advantage of the cached Weather objects — i.e.,
reuse their temperature and condition values?
» First we have to make the cache accessible to Weather:
protected static Page getPageFromCache(URL url) { ... }
protected static void putPagelnCache(Page page) { ... }
» Then we try this code in Weather.download():
Page cachedPage — getPageFromCache(this.url);
if (cachedPage != null) {

this.temperature = cachedPage.temperature;

,/J%

& Type error -- the declared type, Page, doesn’t
have this field.

© Robert Miller 2007

a instanceof B tests whether a’s actual

type is B (or a subclass of B)
Page cachedPage = ge#Q;;;FromCache(this.url);
if (cachedPage instéﬁceof Weather) {
// found a weather page in the cache
Weather cachedWeather = (Weather) cachedPage;
this.condition = cachedWeath%r.condition;
this.temperature = cachedWeaﬁher.temperature;
} else {
// extract condition and temp%rature from the content

"” Fix the type error by downcasting from Page to Weather, which
asserts to Java that you know it will be a Weather object at runtime
(because you just tested it with instanceof)

Don’t confuse casting of object types (which merely changes the declared type at
compile time and doesn’t affect the runtime object at all) and coercion of
primitive types (which actually produces a different runtime value;

e.g. (int)0.5 produces the value 0). They use the same syntax in Java!

Exception

IOException RuntimeException
I
MalformedURLException | NullPointerException
FileNotFoundException ArrayOutOfBoundsException

Exceptions are normally checked at

compile time — Java requires them to be
either caught or declared.

© Robert Miller 2007

try {
fetch("http://www._mit.edu/');

} catch (MalformedURLException e) {
System.out.printIn(*Bad URL: " + e);

} catch (10Exception e) {
System.out.printIn('10 problem: " + €);

}

a thrown exception is tested against each clause until
finding the first one whose declared type is
compatible with the exception object’s actual type

What clause does “htt://www.mit.edu” run?
What clause does “http://www.mit.edu/foobar” run?

What if we switch the order of the clauses? (Tricky! What's the relationship
between the MalformedURLException and |OException classes?)

© Robert Miller 2007

Recall how we cached web pages using static fields and
methods in Page

private static Page[] cache;
private static int cachePointer;

protected static Page getPageFromCache(URL url) { ... }
protected static void putPagelnCache(Page page) { -.- }

It’s sensible to wrap this behavior up into its own class
» Easier to understand: a “cache” abstraction with get and put operations

» Ready for change: we can easily change the data structure we use to
implement it, even if we reuse the cache idea throughout the program

» Safe from bugs: users of the cache don’t have access to its internal
representation, only to the get and put operations

© Robert Miller 2007

public class ArrayCache {
private Page[] array = new Page[100]; -
private int pointer = 0; representation

public Page get(URL url) {
for (Page page : array) {
if (page !'= null && page.g

return page;

tURLQ) -equalsurl)) {

3

operations
3 p!

return null;

}

public void put(Page page) {
array[pointer] = page;
++pointer;
ifT (pointer >= array.length) pointer = O;

} This class needs no constructor, because all its
fields are initialized in their declarations.

© Robert Miller 2007

�http://www.mit.edu/foobar�

The essence of the cache are its get/put operations

» This essence can be captured by a Java interface, which contains only
method declarations (not method bodies)

public interface Cache { interfaces can’t have constructors
public Page get(URL url); or fields either — nothing but
public void put(Page page); method declarations

3
> A class implements the Cache interface by declaring it and providing bodies for
the two methods
public class ArrayCache implements Cache {

public Page get(URL url) { ... }
public void put(Page page) { -.. } since an interface has no
} constructor, you can’t say
» A caller can use Cache as an object type new Cache() — you need to

construct an object of a
class that implements the
interface

Cache cache = new ArrayCache(); <
cache.get(new URL(“http://www.mit.edu”));

© Robert Miller 2007

Let’s organize our classes into packages

» web package: Page, Weather

» web.cache package: Cache,ArrayCache

Packages are folders in the filesystem

» The web.cache package corresponds to the path web/cache

» The folder contains a set of classes and interfaces, each in its own file,
which all start with “package web.cache;” as their first line

» Eclipse handles this automatically when you make new packages and drag &
drop classes into them

© Robert Miller 2007

Packages create separate namespaces for class names

> So you can use short names like Page and Cache without worrying that
those classes already exist in another package

Namespaces are a vital pattern for organizing systems

» Easier to understand: names can be simpler and shorter

» Ready for change: reduces the scope of possible conflicts for new names

> Safe from bugs: names added in other namespaces don’t affect this one

Widely used in Java and other systems

» Class creates a namespace for methods and fields

» Statement block {...} creates a namespace (scope) for local variables

» Domain name (@mit.edu) creates a namespace for user names

Namespaces are often hierarchical

» Sometimes inherit: e.g. local variables are inherited from enclosing scopes

» Sometimes don’t: subpackages do not inherit classes from their parent

package (and import web.* doesn't include web.cache.*)

bert Miller 2

public class ListCache implements Cache {
private List<Page> list = new ArraylList<Page>();

public Page get(URL url) {
for (Page page : list) {
if (page.getURL().equals(url)) {

return page;

3} The List interface contains
} operations for a sequence data
return null; type: add(), get(), size(), etc.

}

The ArrayList class implements List
public void put(Page page) { using an array that grows as needed.

list.add(page);
3
¥ List and ArrayList are generic types, which means they take a
type parameter. List<Type> represents a list of Type objects.
Here we use List<Page> for a list of Page objects.

) Robert Miller 2007

For variable-length sequences, Lists are much better
than Strings or arrays

/* Returns the hailstone sequence from n to 1 as a list.
* e.g. if n=5, then returns the list (5,16,8,4,2,1).
* Requires n >= 1. */
public static List<Integer> hailstoneSequence(int n) {
List<Integer> list = new ArrayList<Integer>();
list.add(n);
while (n '= 1) {
if (isEven(n)) n =n/ 2; else n =3 * n + 1;
list.add(n);
3

return list;

Notice we used List<Integer> rather than List<int>. Generic types can
only take object types as parameters, not primitive types. But every
primitive type has a related object type (int/Integer, char/Character,
long/Long, etc.), and Java automatically converts between them.

public class MapCache implements Cache {
private Map<URL,Page> map = new HashMap<URL,Page>();;

public Page get(URL url) { The Map interface represents
return map.get(url); a set of (key, value pairs and
3 makes it easy to look up the
value associated with a key.
public void put(Page page) { Here, the key is a URL, and the

map.put(page.getURL(), page); | value isthe page for that URL.

¥

The HashMap class implements
Map using a hash table (we’ll
have more to say about this in a
later lecture).

Map is a powerful interface. It’s ideal for a cache, but it has
many other uses too. Learn it well and use it carefully!

© Robert Miller 2007

An interface can be implemented by a nameless class

Starts like a constructor call...

Cache cache = new Cache() {
private Page onlyPage;
public Page get(URL url) {

if (onlyPage != null && onlyPage.url.equals(url)) {
return onlyPage;

} elfztjm null: \ ...but includes a class body defining
3 ’ the interface’s methods (plus other
h! fields and methods if needed)

public void put(Page page) {
onlyPage = page;
}

An anonymous class definition effectively creates a new class, but
doesn’t give it a name. Anonymous classes are frequently used in user
interface programming, which is full of little interfaces to implement.

© Robert Miller 2007

enum defines a type with a small finite set of values
» Contrast with Page, which has an unbounded set of values (web pages!)
» Enums can have methods and fields too, like classes

public enum CompassPoint {
NORTH,
SOUTH,
EAST,
WEST;

enum values are referenced like
public static constants — e.g.
CompassPoint.NORTH

¥

public enum ANSWER {
YES,
NO,
CANCEL ;

© Robert Miller 2007

switch tests a value against a set of cases
» equivalent to a sequence of if-else clauses
» the value can be either an enum or integer type (int, char, etc.)
public static int degrees(CompassPoint point) {
int result;
switch (point) { The cases of a switch must be
case NORTH: result = 0; break; terminated by break, or they

case EAST: result = 90; break; will fall through to the next
case SOUTH: result = 180; break;

case!
case WEST: result = 270; break;
default: throw new RuntimeException(“invalid compass
point'™) 7
}

retukn result;

default is like the else clause of a switch —it’s good practice
to always include one. Often it just throws an exception.

© Robert Miller 2007

Subclassing

» Inheritance of fields and methods

» Declared type vs. actual type

» Overriding and method selection

» Downcasting

Interfaces

» An interface captures the essence of a class: its method specifications
Packages

» Packages define separate namespaces for classes

» Namespaces are a useful organizing principle for|'arge systems
Collections

» List<Type> is a list of Type objects

» Map<Key,Value> is a set of <Key,Value> pairs

» Generic types like List and Map take a type parameter <Type>

© Robert Miller 2007

