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6.005elements ofsoftwareconstruction 
designing state machines 
Daniel Jackson 

Until now, we’ve been doing a crash course in Java. This is the first lecture of the course proper,
starting with state machines -- our first software paradigm. 



a lesson from failure




friendly !re in afghanistan

Afghanistan, December 2001 
‣	 US soldier uses plugger* to mark Taliban 
position for air-strike 

‣	 notices battery-low warning, so replaces 
battery and calls in coordinates 

‣Photograph of PLGR removed due to copyright restrictions.	 resulting strike kills user and two comrades 
and wounds 20 others 

what happened? 
‣	 replacing battery reset to current position 

*PLGR: precision lightweight global-positioning satellite 
receiver 

Vernon Loeb. Friendly Fire Deaths Traced to Dead Battery; Taliban 
Targeted, but U.S. Forces Killed. Washington Post. March 24, 2002 
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A tragic story reported in the Washington Post. 



what can we learn from this? 
accidents are complex 
‣ rarely one cause, so be wary of simple explanations

‣ often human factors + technology


lessons from this case 
‣ design for robustness against all likely failure modes 
‣ defaults are dangerous: user should be warned 
‣ describe and analyze all usage scenarios 
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There are lots of problems here that could be analyzed. For example, there’s clearly a user interface
problem that the device didn’t clearly indicate when it was showing calculated coordinates versus
the coordinates of the user. Like many accidents, this one involved human factors issues in which
the designers didn’t think through all the ways that user might interact with the machine. But
whatever the problem was, it’s clear that we need some way to talk about the possible scenarios in
simple but precise way. 



state machines 
what they are 
‣ a simple notation for describing behaviors 
‣ succinct and abstract -- but not vague! 
‣ basis for analysis and for implementation 

NOCOORD

YOURCOORDMYCOORD

locate

adjust

reset

NOCOORD

YOURCOORDMYCOORD

locate

adjust

reset
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State machines give us this simple and precise way of talking about scenarios. Don’t confuse
abstract with vague! They’re abstract in the sense that they allow you to express only the important
bits, but that isn’t the same as being vague. A state machine doesn’t tell you everything there is to
know about a system, but what it does tell you -- namely what orders events can happen in -- it
tells you very precisely. 



our path 
general strategy 
‣ design behavior --> design mechanism 
‣ three paradigms covering different aspects of software design 

first paradigm: state machines 
‣ today -- state machines for designing behavior 
‣ wednesday -- design patterns for implementing state machines 
‣ friday -- analyzing state machines with invariants 
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This strategy is one we’ll follow throughout the course: first learning how to think about designing
the behavior of a system, and only then thinking about designing the mechanism -- the system’s 
internal structure. This is a very important ‘separation of concerns’. It lets you focus on the
behavior without getting mixed up with mechanism issues. And there’s an important sequencing
here too: how can you figure out what mechanism you need to implement a behavior if you don’t
know what the behavior is? For small systems, many programmers just do the behavioral design
completely in their heads, but that can lead you into real trouble -- and many late nights of
restructuring and debugging. For large systems, teams usually develop requirements and
specification documents. What we’re trying to teach you is the essential notions you need in those
documents. The models we’re teaching you in this course are much more succinct than informal
documentation, can be analyzed automatically by tools (although that’s beyond this course) and can
be translated fairly directly into code, as we’ll see. So constructing these behavioral designs makes
it easier to write the code, because they help bridge the gap -- the code doesn’t come out of thin
air. 



designing a midi piano




a midi-piano 
functionality required 
‣ play notes on computer keyboard 
‣ sustain by holding key down 
‣ cycling through instruments 
‣ record and playback 

context 
‣ piano depends on keyboard, midi API 
‣ this is a dependence diagram -- more later 

need to start by understanding 

keyboard input

javax.sound.midi

my midi piano

‣ keyboard input: press and release 
‣ MIDI interface: commands 
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We’ll see more of these kinds of diagrams later. They’re called _dependency diagrams_. Note that
the edges aren’t labelled: that’s a clue that they’re not state machines! Sometimes people try and
make these various notations look different from one another (eg, by making the boxes slightly
different shapes), but our experience is that it’s more trouble than it’s worth: easier just to use
plain old boxes and arrows and label your diagrams so you know what they are. 

Note, btw, that there’s a big decision that’s already been made here: what the context actually is.
We could have chosen to use a different API for making the musical sounds, and we could have
implemented our own keyboard driver. Just defining where your system sits with respect to the
outside world and your assumptions about it is a big step. 



modeling the context




a single key 
the state machine 
‣ two states, UP and DOWN 
‣ UP is the initial state 
‣ two input event classes, with these designations UP

DOWN

relpr

pr

: 
pr: the keyboard driver reports a key press

rel: the keyboard driver reports a release


meaning: a set of traces 
‣ a trace is a sequence of events 
‣ traces of this machine are 

<>

<pr>

<pr, rel>

<pr, pr, rel>

...
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The designations are more important than you might think. The biggest mistake novices make with
state machine modeling is that the event classes aren’t right. Formulating a designation -- trying to
say exactly what comprises the occurrence of an event -- is a big help in checking whether your
notion of the event class is reasonable, and in conveying it to others. Here the crucial idea is that
pr, for example, doesn’t mean that the user actually pressed the key, which is an important
distinction. 

Interestingly, not all keyboard drivers generate key repeats in this form. In Gnome, for example (as
a student told me after class), the driver actually repeats release-press pairs -- in the notation we’ll
see next week, the repeat is (rel pr)* rather than pr*. That’s bad news, because it’s not at all clear
how the generated repeats can be distinguished from the real key presses. 

Note that the trace set is infinite if the machine has a loop in it, although each trace is itself finite --
the history of events up to some point in time. This notion of traces was invented by Tony Hoare in
a machine formalism called Communicating Sequential Processes. You may be a bit confused if
you’ve seen the notion of languages and state machines in a computer science theory setting.
There, the language usually consists of the set of all complete sequences, which are defined
because there are some special states that are marked as final. Here we only have initial states. 
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the whole keyboard 
represent as parallel combination of state machines 
‣ each key’s machine can take steps independently 
(general rule: shared events must be synchronized, but no sharing here) 

‣ traces include <>, <pr1>, <pr1, rel1>, <pr1, rel1, pr2>, <pr1, pr2, pr1> 
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UP

DOWN

rel1pr1

pr1

...

UP

DOWN

rel2pr2

pr2

1 2

The parallelism here is just conceptual. To implement this kind of parallelism, you could actually
have threads running concurrently, but usually you just have separate state components, one for
each of the submachines, and the whole machine runs sequentially with one of the submachines
taking a step at a time. When the ‘alphabets’ of events of the component submachines overlap, the
shared events have to happen as one. In this case, there aren’t any shared events, but we’ll see
examples of this below. 
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approximate models 
over-approximation 
‣ this model is actually an over-approximation 
‣ it allows more traces than can happen (eg <pr1, pr2, pr1>) -- try it and see 
‣ but this is OK: problem is handling fewer inputs than can occur 
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UP

DOWN

rel1pr1

pr1

...

UP

DOWN

rel2pr2

pr2

1 2

This is an overapproximation because it includes traces that can’t happen in practice. In a real
keyboard driver, the keys are not independent. In many, for example, the key repeat on one key is
terminated when another key is pressed, so the trace <pr1, pr2, pr1> can’t occur, since the
pressing of key 2 prevents repeats of key 1. 

Overapproximation is good because it allows us to use a simpler model. It doesn’t matter if we
handle more input scenarios than actually happen. 

[Note, not explained in lecture: There’s actually a form of overapproximation for output too, called
nondeterminism, in which you show multiple possible outputs happening with the implication that
either they are all equally acceptable, or that some other part of the specification which is not
currently being considered will say which should happen. This is useful because, again, it makes the
model simpler. But there’s a more subtle reason it helps: if I can show that my system has the right
effect whichever output behavior it chooses, then I’ve shown that any of the implementations you
choose will be OK. Sometimes we just want to make sure that everything will be OK without
specifying exactly what the behavior will be. An example of this is giving a caching algorithm
without saying exactly what the rules are for choosing which line to evict. Sometimes we actually
can’t control the behavior. In a distributed system, for example, it’s often impossible to get events
at different hosts to execute in some given ordering, so it’s better to allow whatever ordering can
happen, and make sure the system will work whichever it is.] 
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modelling the midi API 
simple interface 
‣ just turn each note on and off; need explicit initialization 
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OFF

ON

OFF

ON

endC#
beginC#

endC
beginC

START

init

C#C

...

There’s nothing much going on here: just a simple state machine protocol, just like the kind many
APIs present. File i/o, for example, has the same kind of protocol: you can’t read or write when the
file is closed, etc. 



first design draft
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!rst design draft 
design strategy 
‣ base structure on input and embed output events 
‣ absorb superfluous presses 
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UP

DOWN

relk/endnote(k)prk/beginnote(k)

prk

...

kSTART init

This shows the result of starting with the basic keyboard and adding output events. I’ve written this
as a generic machine, with the understanding that there is one of these for each key. I’ve assumed
some function, note, that takes a key and returns a musical note associated with it. So begin_note
(k) means the begin event for the note associated with key k. Note that there’s no output generated
for the repeated press events. 

In lecture, I referred to the filtering of the superfluous presses as ‘debouncing’, but that’s an abuse
of terminology. Debouncing means eliminating the spurious press and release events associated
with the electrical contact of the key’s switch not closing cleanly. 



state machine semantics




the i/o shorthand 
input/output shorthand 
‣ i/o label is just a shorthand 

subtle consequence 
‣ o need not follow i immediately 
‣ another event can intervene 

A

B

i/o

A

i

B

o

short 
for:
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There are different ways that a state machine formalism can handle inputs and outputs. This is
perhaps the simplest way. We just say that after the input occurs, the output can happen -- and no
other inputs until it’s happened. Note that we don’t actually distinguish inputs from outputs in any
formal way, although of course when you designate the events you’ll say which are which. And we
don’t have any notion of outputs following inputs immediately: if this was a component submachine
in a parallel combination, another machine could take a step between the i and the o, so that the o
doesn’t immediately follow the i. In most situations this is exactly what we want anyway. 



 a state machine is ... 
‣ a set of states 

State = { UP, DOWN, PRESSED, RELEASED } 
‣ a set of initial states 

Init = { UP } 
‣ a set of events 

Event = { pr, rel, begin, end } 
‣ a transition relation 

UP

DOWN

relbegin

pr

PRESSED RELEASED

pr end

trans ⊆ State × Event × State = 
{ (UP, pr, PRESSED), (PRESSED, begin, DOWN), (DOWN, pr, DOWN),
   (DOWN, rel, RELEASED), (RELEASED, end, UP) } 

‣	 trace set (derived from trans and Init)

traces = { <>, <pr>, <pr, begin>, <pr, begin, pr>, <pr, begin, rel>, ...}
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Here’s the mathematical definition of a state machine that we’re using. The diagram can be
translated easily into this structure: each box becomes a member of the set of states, each label
name becomes an event class, each edge becomes a tuple in the transition relation. In terms of
what the machine actually means though we only care about the traces: the states are just an
artifact to help us define the order in which the events can occur. 

In general, there can be more than one initial state. This allows you to describe overapproximations
-- it’s another form of non-determinism, which I mentioned before -- allowing an execution to
start in any of the initial states. But generally for the machines we’ll look at there’s just one initial
state. 



recording




exercise 
draw a state machine where 
‣ pressing R key toggles between recording on and off 
‣ and switches indicator light to red (on) and green (off) 
‣ ignore actual recording for now 

!REC

REC

prPsetRed

ACTIVATED DEACTIVATED

prP setGreen

INIT
setGreen

!REC

REC

prP/setGreenprP/setRed

INIT
setGreen
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In doing this exercise, some of you didn’t have explicit events for setting the indicator light green
and red, and just labeled the states. That’s not so good, because as we noted before, the states
don’t really mean anything: it’s only the traces that are observable. 



adding recording 
design strategy 
‣ add a parallel machine that maintains additional state 

new events and states 
‣ events 

prR: keyboard driver reports press of R key

pr(k): keyboard driver reports press of any 


key except for R

‣ states 

!REC: recording o"


!REC

REC

prRprR

pr(k), rel(k)

pr(k), rel(k)

REC: recording on


design question 
‣ do we need to worry about key repeats? 
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You might think that this machine says nothing -- and you’d be almost right. All it does is parse a
sequence of keyboard events, deciding whether we’re in the recording mode or not after a given
sequence. As we noted before, only traces matter and not states. But we’ll actually use these states
to determine outputs, after elaborating them a bit. 

There’s no need to worry about key repeats in this case, as we don’t expect the user to hold the R
key down. If we were worried about them, we could filter them out the way we filtered them out for
other keys. 



textual notation 
state = (control-state, data-state) 
‣ diagram only shows control state 
‣ to show data state, use textual notation 

state // declare state and init
  List<Event> recording = <>; // state component and initial value 

boolean REC = false; // this component is a mode 

op pr-R // declare operation 
when true // precondition: when op can fire 
do // postcondition: e"ect of operation

 if (! REC) recording = <>;
 REC = !REC 

op pr (k) // any press except an R 
when true 
do // append key to recording 

if (REC) 
recording = recording ^ <prk> // .. and similar op for rel(k) 

22© Daniel Jackson 2008 

Here’s the elaboration. We want to say what actually gets recorded, and we can’t do that in a
diagram. This is a textual state machine. It has exactly the same semantics as a diagram, but the
states and transitions are now implicit. The set of states is declared by giving state components,
and each state is then a combination of values of the components. The transitions are declared by
giving operations, each of which defines a set of transitions. For example, the operation pr(k)
defines the set of all key press events, where k is the key being pressed. Note that there’s a subtle
difference in how I use the terms pr(k) and pr_k. The term pr(k) is a generic press event matching
any key k; the term pr_k is a press event for a particular key k. The operation is like a method: you
supply the argument k. 

The ! is boolean negation, so REC = !REC just flips the boolean value of REC. This would be bad Java
style, btw, to name a variable in all caps. I’m doing it here so that it matches the name of the state
in the diagram. When the state machine has one particular state component that takes one of a
small set of values, such as REC, it is often called a “mode”. You can think of all the states of the
machine being partitioned into the modes: within the mode REC, there are different states 
corresponding to the different values of the state component recording. 

The statement “recording = recording ^ <pr_k>” means that the event of key k being pressed is
appended onto the sequence called recording. The ^ is concatenation of sequences, and <e> is the
singleton sequence containing just e. This is standard mathematical notation which unfortunately
you can’t use in Java. 

Note that each operation has two parts, a precondition that says when the operation can occur, and
a postcondition describing the way the state is updated. It’s important to understand that although
this seems much more complicated than the state machine diagram, the mathematical structure
underneath is the same. So the operation pr-R, for example implicitly defines transitions like 

(!REC, <e>), pr-R, (REC, <>)
(REC, <e>), pr-R, (!REC, <e>) 

where each state has two components. There are just many more of these than for the diagram,
because there’s a transition tuple (REC, s) for example for every recording sequence s. 



check your understanding 
what difference would this make? 
‣ instead of test in postcondition 

op pr (k)

when true

do


if (REC)

recording = recording ^ <prk>


‣ use precondition 
op pr (k)


when REC

do


recording = recording ^ <prk> 
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In our example, we didn’t actually use the precondition, because every operation was allowed in
every state. Here’s an example of using it, although it’s not what we want in this case. Suppose we
put the test from the postcondition into the precondition. What this now says is not that we only
update the recording sequence when in mode REC but that the pr-R event can only occur in mode
REC, which is a very different thing! 



analyzing recording 
consider traces 
‣	 how about this trace? 

<pr(1), prR, rel(1), prR> 
‣	 very strange behavior: recording starts with key release! 

two simple options 
‣	 filter out initial key releases 
‣	 or just allow it (which is what we’ll do) 

or perhaps 
‣	 regard as evidence of larger issue 
‣	 maybe recording should be of musical

structure and not of user events?


!REC

REC

prRprR

pr(k), rel(k)

pr(k), rel(k)
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Back to our simple machine. Note that something funny can happen: you can begin a recording with
a key being released! There are many ways we could deal with this. We could filter out pr-R events
when any other key is depressed. We could do something more complicated and somehow handle
the unmatched release events, either by generating press events to match or by dropping them.
What I actually did in my implementation, which you’ll see in the next lecture, is just to ignore this
issue because I wanted to keep things simple. 

But actually this little detail is a symptom of a much bigger problem. What’s really going on is that
we shouldn’t be recording press and release events at all. We should be recording musical entities,
such as notes of a particular duration and pitch. This little problem here is just the tip of the
iceberg. If we go ahead and record only press and release events, we won’t be able to associate
different instruments with different notes: recording with one instrument and then playing back and
mixing with notes played on another instrument. This is a typical occurrence in a software
development: a small glitch reveals that actually the entire abstraction is suspect. It’s one reason
that thinking carefully about the behavior before you start building is important, because it’s much
easier to make big changes at this point than when we already have a pile of code written. 



playback




playback 
let’s add a playback mode 
‣	 use P key for playing back 

prP: keyboard driver reports P key pressed 
‣	 add an event to signal end of playback 

done: output event to signal end of playback 

first design option 
‣	 playback only enabled

when recording is off


‣	 no key presses during playback 

PLAY

REC

prRprR

PLAYBK

prP

done
pr(k), rel(k)

pr(k), rel(k)
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This is the most simple notion of playback - it occurs in a mode in which no recording or manual
playing is allowed. I’m ignoring for now the question of what exactly is played back; we’ll come to
that soon. 



record during playback 
can you record during playback? 
‣	 very useful, but much trickier 

what does playback involve? 
‣	 generated playback events merged

with user keyboard events?


PLAYBK

RECPLAYBK

PLAY

REC

prP

done

prR
prR

prR
prR

prP

done
H pr(k),

rel(k)
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This is the more sophisticated and useful notion of playback, with recording and playback
interleaved in any way we please. I’m using a statechart shorthand. The arc coming from the outer
box labeled “pr(k), rel(k)” says that you can have a transition on a press or release of any key from
any of the states inside the box, and the destination of the transition is whatever state you were in
before. (H) means history and a transition to that special marker means a transition to the last state
that the machine was in inside the larger superstate box. 

This still doesn’t resolve the question of what is actually played back. Onto that next... 
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an asychronous solution 
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idea 
‣ playback generates press and release events 
‣ merge these events on a queue with incoming keyboard events 
‣ midi piano sees just one stream of events 

keyboard input javax.sound.midimy midi piano
event
queue

playback 
events

Here’s perhaps the simplest way to handle playback. When the playback key is pressed, all the
events in the recording are added to an input queue, along with whatever events are being
generated by the keyboard driver. They can be interleaved in an arbitrary way so long as none of
the events are delayed too long. As noted above, a better abstraction would be to record and
playback musical notes; in that case, we’d have to split the piano module into two parts, and put
the queue between the two. This isn’t really any more complicated conceptually, but it does require
inventing a whole new set of events, and I wanted to avoid that complication. There is, btw, a tricky
issue to do with how the events are timed, which I’ve ignored. A simple solution is to timestamp
each press or release with the delay since the last press or release, and have a process that delays
putting the next playback event into the queue by that amount. 
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the playback machine 
another over-approximation 
‣ which enq events are generated will depend on what was recorded 
‣ (that is, reads recording state component) 
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DONE

PLAYBK

!REC

REC

done
prP

prR
prR

pr(k), rel(k)

pr(k), rel(k)

enq (prk),

enq (relk)

This diagram describes the enqueuing of the events; it shows that during playback any sequence of
press and release events can be enqueued. We’re abstracting away the details of which events get
enqueued, but it’s pretty straightforward: it’s just the events in the recording sequence that we
specified textually. 
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more on recording state 
what would happen if 
‣ playback is pressed during record 
‣ generated events get played 
‣ and added to recording 
‣ so they get played back again... 

oops! 
‣ keep two recordings 

current: holds events being recorded 
last: holds events being played back 

‣ show how these are updated in textual syntax 
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revised recording with playback


state
  List<Event> last, current = <>;


boolean REC = false;

op prR 

do

if (REC) last = current else current = <>

REC = ! REC


op pr (k) // .. and similar op for rel(k) 
do 

if (REC) current = current ^ <prk> 

op prP


do // enq events in last
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Here’s the textual description showing how the two lists are handled. I omitted the preconditions,
which means that they are by default true. This description doesn’t actually handle how the events
are enqueued. 
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!nal state machine 

state
  List<Event> last, current = <>; 

boolean REC = false; 

op prR 

do if (REC) last = current else current = <>; REC = ! REC 

op pr (k) 
do if (REC) current = current ^ <prk> 

op rel (k) 
do if (REC) current = current ^ <relk> 

op prP 

do // enq events in last 32 

DONE

PLAYBK

!REC

REC

done
prP

prR
prR

pr(k), rel(k)

pr(k), rel(k)

enq (prk),

enq (relk)

UP

DOWN

relk/endnote(k)prk/beginnote(k)

prk

k

This is a summary of what we’ve arrived at in our state machine behavior design, and it will be the
starting point for our design of the mechanism. You can think of the textual part as describing
another component state machine that is in parallel with all the others. The first two diagrammatic
component machines just summarize this machine from the perspectives of the recording and
playback keys. 



summary
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principles 
description before invention 
‣ before you invent something, understand what’s there 
‣ especially important for your design’s environment 
‣ eg, keyboard driver and midi API 

behavior before mechanism, or ‘what before how’ 
‣ design the behavior of a system first 
‣ easier to design the mechanism when you know what the behavior is 
‣ and easier to analyze the behavior when you can ignore mechanism 
‣ eg, state machines before Java classes 

get the details right 
‣ details matter for quality, and can hide major structural flaws 
‣ eg, details of playback during record determine gross structure 
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addendum
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modeling advice 
grounding in reality 
‣ select events first and thoughtfully 
‣ give explicit designations saying what they mean 
‣ must be atomic and recognizable 

bad smells 
‣ events not designated, event classes not really disjoint 
‣ no initial state marked 
‣ states or transitions without labels 

a state machine is not a control flow graph 
‣ no behavior inside states 
‣ no ‘decision edges’ 
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