
MIT OpenCourseWare
http://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

6.005elements ofsoftwareconstruction
implementing state machines

Daniel Jackson

what are design patterns?

design patterns
Images of book covers removed due to copyright restrictions.
A Pattern Language (Christopher Alexander et al.),
and Design Patterns: Elements of Reusable
Object-Oriented Software (Erich Gamma et al.).design?

‣ code design, not behavioral design
‣ some language-dependent

where they came from
‣ pattern idea due to Christopher Alexander
‣ popularized in software engineering by “Gang of Four” book

controversies
‣ sometimes complicated, work around language defects

our patterns
‣ we’ll use patterns throughout the course
‣ some Gang of Four, some standard but unnamed patterns

3© Daniel Jackson 2008

Design patterns are just a way of codifying knowledge, but they’re a very effective way of getting
novices up to speed with ideas that they would otherwise have to learn through long experience.
The DP book is one of the most successful books in software engineering history, and is well worth
owning and reading. It’s in C++ but most of the lessons apply to Java. Whether they apply to more
modern languages (such as Scala or Haskell) is another matter, since many of the patterns are
workarounds for missing language features. Most SE courses teach design patterns as a big catalog.
Instead, we’re going to learn the patterns that are relevant to moving from behavioral design to
code for each of the paradigms. So today is patterns for implementing state machines.

pattern elements
how we’ll explain patterns in this course
‣ name: essential in design discourse
‣ motivation & tradeoffs: why the pattern was invented, +/-’s
‣ prototype: what the structure looks like on a simplified example
‣ example: applied to a non-trivial example

4© Daniel Jackson 2008

The name is more important than you might think. When you’re discussing a design, it’s useful to
say “let’s use the Composite pattern here” and have your team mate immediately understand you.
Every pattern has not only positives but also negatives; as always, engineering is a tradeoff. One
thing you should be aware of is that most patterns make the code more _complicated_, usually to
achieve some kind of decoupling. This creates a risk that you’ll go pattern crazy and produce code
with so many patterns in it it’s close to incomprehensible.

levels of understanding

three levels of understanding patterns

mechanics
‣ how the pattern works at runtime
‣ basic Java knowledge: you should grasp this very quickly

motivation
‣ why the pattern was invented, when to use it
‣ you should understand this with a little practice

subtleties
‣ implications of using the pattern
‣ this level of understanding will come with time

5© Daniel Jackson 2008

state machine patterns
machine as class
‣ state machine is implemented as a class
‣ related to Gang of Four’s Singleton pattern

machine as object
‣ class represents set of state machines
‣ the standard use of objects

state as object
‣ called State by Gang of Four

state as enumeration
‣ factoring out control state
‣ can be used in machine as class, machine as object

6© Daniel Jackson 2008

Singleton is a name used when a class has only one instance; we’re using this idea in the context of
state machines, which is narrower than the pattern’s intent. Machine as object doesn’t get a name
in the GOF book because it’s really the standard OO idiom. State as Object, or State as the GOF call
it, is very nice in some specialized circumstances but not very widely applicable, and quite clumsy if
it doesn’t fit well. State as Enumeration is an old-fashioned pattern that’s been used for years in
state machine code, especially autogenerated code.

starting point: state machine

state machine to implement

DONE

PLAYBK

!REC

REC

done
prP

prR
prR

pr(k), rel(k)

pr(k), rel(k)

enq (prk),

enq (relk)

UP

DOWN

relk/endnote(k)prk/beginnote(k)

prk

k

state
 List<Event> lastRecording, recording = <>;

boolean REC = false;

op prR

do if (REC) lastRecording = recording else recording = <>; REC = ! REC

op pr (k)
do if (REC) recording = recording ^ <prk>

op rel (k)

do if (REC) recording = recording ^ <relk>

op prP

do // enq events in last 8
© Daniel Jackson 2008

This is a summary of where we got to in our state machine behavior design, and it will be the
starting point for our design of the mechanism. You can think of the textual part as describing
another component state machine that is in parallel with all the others. The first two diagrammatic
component machines just summarize this machine from the perspectives of the recording and
playback keys. We’ll illustrate the patterns on the recording part -- the submachine on the left and
the textual submachine -- but we’ll also look at playback later in the lecture.

machine as class pattern

motivation & tradeo!s
simple imperative idiom
‣ state stored in static fields

‣ operations implemented as static methods

‣ each operation handles the events in some event class

advantages
‣ no allocation, so good for real-time applications

‣ operations can be invoked using globals from anywhere

disadvantages
‣ can’t create multiple instances of a machine
‣ modularity in Java is based on objects, not classes
‣ can’t pass around and access anonymously or through interface

10© Daniel Jackson 2008

By “event class”, I mean class in the state machine semantics sense. You don’t have to have a Java
class for the events (although that’s often convenient, and we will actually do that).

Note the namespace advantage. With objects, you need to be holding an object to call one of its
methods. But to call a static method m of a class C, you just write C.m(), and so long as you have
access to C and m (that is, they’re not hidden by access modifiers), you can call the method.

The modularity issue is rather subtle and won’t make sense until you’ve seen later at the end of the
lecture what we can do with objects (and can’t do with classes). This is just how Java works; in other
programming languages, you can pass modules around the way Java lets you pass around objects.

prototype

machine

class Machine {

 static StateComponent comp1 = ... ;

 static StateComponent comp2 = ... ;

 static void op1 () {

 comp1 = f11(comp1, comp2);

 comp2 = f21(comp1, comp2);

 }

 static void op2 () {

 comp1 = f12(comp1, comp2);

 comp2 = f22(comp1, comp2);

 }

 ...
}

dispatcher

Machine.op1 ();

11© Daniel Jackson 2008

There are some number of state components, comp1, comp2, etc. In each operation, some of these
are updated by computing new values based on old values of the components. Note that the
dispatcher just needs to access the name of the class -- there are no objects here.

example: machine

public class PianoMachine {

private static boolean isRecording = false;

private static List<NoteEvent> recording;

private static List<NoteEvent>lastRecording = new ArrayList<NoteEvent>();

private static Set<Pitch> pitchesPlaying = new HashSet<Pitch>();

public static void toggleRecording() {

if (isRecording)

lastRecording = recording;

else {

recording = new ArrayList<NoteEvent>();

 }

isRecording = !isRecording;

 }

public static void beginNote(NoteEvent event) {

Pitch pitch = event.getPitch();
if (pitchesPlaying.contains(pitch))

 return;

pitchesPlaying.add(pitch);
midi.beginNote(event.getPitch().toMidiFrequency());

}

if (isRecording) recording.add(event);

...}

12© Daniel Jackson 2008

Recall that in our state machine formalism, an event might not be able to happen in some state. But
in all the implementation patterns that we’ll be looking at, input events can always happen --
although in some states they might have no effect.

Note how the set of key state machines, each with a boolean state component, is implemented here
as a single state machine with a state component that is a set. This is a standard transformation.

Rather than calling the operation pressR, I’ve called it toggleRecording. I did this to decouple the
meaning of the events from the particular bindings we chose for them. If we changed to using a
different key, we wouldn’t want to change all the names in the program.

example: machine

public class PianoMachine {

private static boolean isRecording = false;

private static List<NoteEvent> recording;

private static List<NoteEvent>lastRecording = new ArrayList<NoteEvent>();

private static Set<Pitch> pitchesPlaying = new HashSet<Pitch>();

public static void toggleRecording() { why is the operation
if (isRecording) calledlastRecording = recording;
else { toggleRecording and

recording = new ArrayList<NoteEvent>(); not pressR?
}
isRecording = !isRecording;

 }

public static void beginNote(NoteEvent event) {

Pitch pitch = event.getPitch();
if (pitchesPlaying.contains(pitch))

 return;

pitchesPlaying.add(pitch);
midi.beginNote(event.getPitch().toMidiFrequency());

}

if (isRecording) recording.add(event);

...}

12© Daniel Jackson 2008

Recall that in our state machine formalism, an event might not be able to happen in some state. But
in all the implementation patterns that we’ll be looking at, input events can always happen --
although in some states they might have no effect.

Note how the set of key state machines, each with a boolean state component, is implemented here
as a single state machine with a state component that is a set. This is a standard transformation.

Rather than calling the operation pressR, I’ve called it toggleRecording. I did this to decouple the
meaning of the events from the particular bindings we chose for them. If we changed to using a
different key, we wouldn’t want to change all the names in the program.

example: machine
public class PianoMachine {

private static boolean isRecording = false;

private static List<NoteEvent> recording;

private static List<NoteEvent>lastRecording = new ArrayList<NoteEvent>();

private static Set<Pitch> pitchesPlaying = new HashSet<Pitch>();

public static void toggleRecording() { why is the operation
if (isRecording) calledlastRecording = recording;
else { toggleRecording and

recording = new ArrayList<NoteEvent>(); not pressR?
}
isRecording = !isRecording;

 }

how is the state of the
public static void beginNote(NoteEvent event) {

Pitch pitch = event.getPitch(); key submachine
if (pitchesPlaying.contains(pitch)) represented?

 return;

 pitchesPlaying.add(pitch);

 midi.beginNote(event.getPitch().toMidiFrequency());

 if (isRecording) recording.add(event);

}

...}

12© Daniel Jackson 2008

Recall that in our state machine formalism, an event might not be able to happen in some state. But
in all the implementation patterns that we’ll be looking at, input events can always happen --
although in some states they might have no effect.

Note how the set of key state machines, each with a boolean state component, is implemented here
as a single state machine with a state component that is a set. This is a standard transformation.

Rather than calling the operation pressR, I’ve called it toggleRecording. I did this to decouple the
meaning of the events from the particular bindings we chose for them. If we changed to using a
different key, we wouldn’t want to change all the names in the program.

example: dispatcher

public class PianoApplet extends Applet {

 public void init() {

 addKeyListener(new KeyAdapter() {

 public void keyPressed(KeyEvent e) {

 char key = (char) e.getKeyCode();

 switch (key) {

 case 'P': PianoMachine.startPlayback(); return;

 case 'R': PianoMachine.toggleRecording(); return;

 }

 NoteEvent ne = new BeginNote (keyToPitch (key));

 PianoMachine.beginNote (ne);

 }

...}

13© Daniel Jackson 2008

This is a standard pattern called Listener. We create an object called a listener that is attached (by
the addKeyListener) call to the applet; the applet then calls the method keyPressed on this listener
when a key is pressed. The syntax of the expression that is passed to addKeyListener is a bit
complicated but all it’s doing is creating an object of an anonymous subclass of KeyAdapter. You
can think of it as saying: make an object of type KeyAdapter but with this method for KeyPressed.

machine as object pattern

motivation & tradeo!s
standard object-oriented idiom
‣ state stored in fields or instance variables of object

‣ operations implemented as methods

advantages
‣ allow multiple machines of same type
‣ can pass machine object around and invoke operation on it anywhere
‣ can exploit modularity and decoupling

disadvantages
‣ indirection and aliasing can make code harder to understand

15© Daniel Jackson 2008

Indirection means that you can have a sequence of calls that are passed through various
intermediate objects. This can be used to good effect, but it can make the code hard to follow as
you have to trace through lots of calls. Aliasing means that two different names can refer to the
same object, so that calls to one are equivalent to calls to the other: x.m() and y.m() might actually
have the same effect. With singletons, life is much simpler: each class name describes a disjoint
part of the state, and a call to C.m() can never be the same as a call to D.m().

prototype

machine

class Machine {

 StateComponent comp1 = ... ;

 StateComponent comp2 = ... ;

 void op1 () {

 comp1 = f11(comp1, comp2);

 comp2 = f21(comp1, comp2);

 }

 void op2 () {

 comp1 = f12(comp1, comp2);

 comp2 = f22(comp1, comp2);

 }

 ...

}

dispatcher
Machine m = new Machine ();
 // make machine

m.op1 ();

 // use machine

16© Daniel Jackson 2008

This is just like Machine as Class, except that we have methods instead of procedures (static
methods), and the state components are local to the object representing the machine. Note that the
machine has to be created before we can use it.

example: machine
public class PianoMachine {

private boolean isRecording = false;

private List<NoteEvent> recording, lastRecording;

private Set<Pitch> pitchesPlaying;

public PianoMachine() {

 lastRecording = new ArrayList<NoteEvent>();

pitchesPlaying = new HashSet<Pitch>();

}

public void toggleRecording() {

if (isRecording)

lastRecording = recording;

else {

recording = new ArrayList<NoteEvent>();

}

isRecording = !isRecording;

 }

 public void beginNote (NoteEvent event) {

Pitch pitch = event.getPitch();

if (pitchesPlaying.contains(pitch)) return;

pitchesPlaying.add(pitch);

midi.beginNote(pitch.toMidiFrequency());

if (isRecording) recording.add(event);

 }

...}

17© Daniel Jackson 2008

The variable recording can be viewed as an example of the Machine as Object pattern -- in fact, just
about every mutable object fits this pattern (which is probably why it doesn’t have an official
name!).

example: machine

public class PianoMachine {

private boolean isRecording = false;

private List<NoteEvent> recording, lastRecording;

private Set<Pitch> pitchesPlaying;

public PianoMachine() {

 lastRecording = new ArrayList<NoteEvent>();

pitchesPlaying = new HashSet<Pitch>();

}

public void toggleRecording() {

if (isRecording)

lastRecording = recording;

else {

recording = new ArrayList<NoteEvent>();

}

isRecording = !isRecording;

 }

 public void beginNote (NoteEvent event) {

Pitch pitch = event.getPitch();

if (pitchesPlaying.contains(pitch)) return;

pitchesPlaying.add(pitch);

midi.beginNote(pitch.toMidiFrequency());

if (isRecording) recording.add(event);

 }

...}

17© Daniel Jackson 2008

what’s the di!erence
between the meaning of
the expression recording

in this pattern and the last

one?

The variable recording can be viewed as an example of the Machine as Object pattern -- in fact, just
about every mutable object fits this pattern (which is probably why it doesn’t have an official
name!).

example: machine

public class PianoMachine {

private boolean isRecording = false;

private List<NoteEvent> recording, lastRecording;

private Set<Pitch> pitchesPlaying;

public PianoMachine() {

 lastRecording = new ArrayList<NoteEvent>();

pitchesPlaying = new HashSet<Pitch>();

}

public void toggleRecording() {

if (isRecording)

lastRecording = recording;

else {

recording = new ArrayList<NoteEvent>();

}

isRecording = !isRecording;

 }

 public void beginNote (NoteEvent event) {

Pitch pitch = event.getPitch();

if (pitchesPlaying.contains(pitch)) return;

pitchesPlaying.add(pitch);

midi.beginNote(pitch.toMidiFrequency());

if (isRecording) recording.add(event);

 }

...}

17© Daniel Jackson 2008

what’s the di!erence
between the meaning of
the expression recording

in this pattern and the last

one?

think of recording as being
its own state machine,

nested in the larger one.
what pattern is used?

The variable recording can be viewed as an example of the Machine as Object pattern -- in fact, just
about every mutable object fits this pattern (which is probably why it doesn’t have an official
name!).

example: dispatcher

public class PianoApplet extends Applet {

 public void init() {

 final PianoMachine machine = new PianoMachine();

 addKeyListener(new KeyAdapter() {

 public void keyPressed(KeyEvent e) {

 char key = (char) e.getKeyCode();

 switch (key) {

 case 'P': machine.startPlayback(); return;

 case 'R': machine.toggleRecording(); return;

 }

 NoteEvent ne = new BeginNote (keyToPitch (key));

 machine.execute (ne);

 }

 });

...}

18© Daniel Jackson 2008

Listener pattern again, but something subtle here. The keyPressed method inside the newly created
listener object makes method calls on the object named by the variable machine, which is declared
outside. This is called a ‘closure’. Functional languages (such as LISP, Scheme and ML) offer more
powerful closure mechanisms. In Java, there a bit restricted. Note that any variable referred to inside
the closure that came from outside must be declared as final. This can be quite a nuisance.

state as enumeration pattern

motivation & tradeo!s
syntactic clarity
‣ reflect state transitions clearly in syntax
‣ uniform decisions without nested ifs

advantages
‣ direct correspondence with diagram
‣ easy to read, write, generate automatically

disadvantages
‣ Java inherited C-style “fall through”; if exploited, code gets hard to read
‣ assumes one ‘mode’ or ‘superstate’ variable

20© Daniel Jackson 2008

Fall through in a switch statement in C was responsible for a bug that brought down the AT&T
phone system in January 1990. See:

 http://catless.ncl.ac.uk/Risks/9.61.html#subj2

 http://catless.ncl.ac.uk/Risks/9.69.html#subj5

What I mean by one ‘mode’ variable is this. Often the state components involve various data
structures, counters, etc but only one ‘control state’ component that has typically between 2 and 10
values. These values are called ‘modes’.

http://catless.ncl.ac.uk/Risks/9.61.html#subj2
http://catless.ncl.ac.uk/Risks/9.69.html#subj5

prototype

in context of machine as class

class Machine {

 enum State { S1, S2, S3 }

 static State state;

 static void op1 () {

 switch (state) {

 case S1: if ... state = State.S2 else state = State.S3 ...; break;

 case S2: ... state = State.S3; break;

 case S3: ... state = State.S1; break;

 }

 ...

}

21© Daniel Jackson 2008

example: machine

public class PianoMachine {

private List<NoteEvent> recording, lastRecording;

private enum State {

PLAYING_PRIOR_TO_FIRST_RECORDING, RECORDING, PLAYING

 }

private State state;

public void toggleRecording() {

switch (state) {

case PLAYING:

case PLAYING_PRIOR_TO_FIRST_RECORDING:

state = State.RECORDING;

recording = new ArrayList<NoteEvent>();

return;

case RECORDING:

lastRecording = recording;

state = State.PLAYING;

 }

 }

...

}

22© Daniel Jackson 2008

PLAYING_PRIOR_TO_FIRST_RECORDING, RECORDING, PLAYING are the ‘modes’.

Note the return statement in the switch branch, and how the first case falls through into the second.

The additional state is used in the playback operation: if it’s prior to the first recording, no playback

occurs.

The main state machine pattern here is Machine as Object.

example: machine

public class PianoMachine { what ‘s the main state

private List<NoteEvent> recording, lastRecording; machine pattern being used
here?private enum State {

PLAYING_PRIOR_TO_FIRST_RECORDING, RECORDING, PLAYING

 }

private State state;

public void toggleRecording() {

switch (state) {

case PLAYING:

case PLAYING_PRIOR_TO_FIRST_RECORDING:

state = State.RECORDING;

recording = new ArrayList<NoteEvent>();

return;

case RECORDING:

lastRecording = recording;

state = State.PLAYING;

 }

 }

...

}

22© Daniel Jackson 2008

PLAYING_PRIOR_TO_FIRST_RECORDING, RECORDING, PLAYING are the ‘modes’.

Note the return statement in the switch branch, and how the first case falls through into the second.

The additional state is used in the playback operation: if it’s prior to the first recording, no playback

occurs.

The main state machine pattern here is Machine as Object.

example: machine

public class PianoMachine {

private List<NoteEvent> recording, lastRecording;

private enum State {

PLAYING_PRIOR_TO_FIRST_RECORDING, RECORDING, PLAYING

 }

private State state;

public void toggleRecording() {

switch (state) {

case PLAYING:

case PLAYING_PRIOR_TO_FIRST_RECORDING:

state = State.RECORDING;

recording = new ArrayList<NoteEvent>();

return;

case RECORDING:

lastRecording = recording;

state = State.PLAYING;

 }

 }

...

}

22© Daniel Jackson 2008

what ‘s the main state

machine pattern being used

here?

what code is executed when

state is PLAYING? when

state is PLAYING_PRIOR...?

PLAYING_PRIOR_TO_FIRST_RECORDING, RECORDING, PLAYING are the ‘modes’.

Note the return statement in the switch branch, and how the first case falls through into the second.

The additional state is used in the playback operation: if it’s prior to the first recording, no playback

occurs.

The main state machine pattern here is Machine as Object.

example: machine

public class PianoMachine {

private List<NoteEvent> recording, lastRecording;

private enum State {

PLAYING_PRIOR_TO_FIRST_RECORDING, RECORDING, PLAYING

 }

private State state;

public void toggleRecording() {

switch (state) {

case PLAYING:

case PLAYING_PRIOR_TO_FIRST_RECORDING:

state = State.RECORDING;

recording = new ArrayList<NoteEvent>();

return;

case RECORDING:

lastRecording = recording;

state = State.PLAYING;

 }

 }

...

}

22© Daniel Jackson 2008

what ‘s the main state

machine pattern being used

here?

what code is executed when

state is PLAYING? when

state is PLAYING_PRIOR...?

how is additional state

PLAYING_PRIOR... used?

PLAYING_PRIOR_TO_FIRST_RECORDING, RECORDING, PLAYING are the ‘modes’.

Note the return statement in the switch branch, and how the first case falls through into the second.

The additional state is used in the playback operation: if it’s prior to the first recording, no playback

occurs.

The main state machine pattern here is Machine as Object.

state as object pattern

motivation
major and minor modes
‣ want to separate state machine behavior
‣ transitions between major modes (often simple and discrete)
‣ transitions within modes (often over complex data)

idea
‣ one class for each state (major mode)
‣ class contains additional state components for this mode
‣ state transition returns new state object, maybe from another class

24© Daniel Jackson 2008

I like to think of the major transitions between modes as ‘low frequency’ behavior, and the
transitions within modes as ‘high frequency’ behavior. Think of a protocol for getting email from a
server: you login, download the mail messages, display them, etc. Each of these phases might
correspond to a mode. Within each mode, there are lots of smaller state changes, such as going
from one message to the next.

prototype

interface declaring states

interface State { State op1 (); State op2 (); ... }

class implementing a single (super) state

class S1 implements State {

 int c = 0;

 State op1 () { c++; return this; }

State op2 () {

 if (c > 10) return new S2 ();

 else return this;

 }

 ...
}

dispatcher

State state = new S1 ();

...

state = state.op1 ();

25© Daniel Jackson 2008

The basic idea here is that each transition creates a new state object, which gets bound to the
variable called state in the dispatcher.

The dispatcher really looks different in this pattern. It’s actually inconvenient enough to have to call
the operations like this that it’s often good to wrap the calls and introduce another class that’s used
in the Machine as Object style. This is what I actually did for the midipiano -- see sample code on
next slide.

example: dispatcher
public class PianoMachine {

private PianoState state;

public PianoMachine() {

state = new PlayingState(new ArrayList<NoteEvent>());

}

public void toggleRecording() {

state = state.toggleRecording();

}

public void startPlayback() {

state = state.startPlayback();

}

public void beginNote(NoteEvent event) {

state = state.beginNote(event);

}

public void endNote(NoteEvent event) {

state = state.endNote(event);

}

}

26© Daniel Jackson 2008

This is an example of wrapping the simple dispatch code. It’s easy to understand but tedious to
write. Note how the empty recording list has to be passed to the first playing state. We’ll see more
of this passing of state components on the next slide; it’s a liability of this pattern.

example: machine
public interface PianoState {

public PianoState toggleRecording();

 ...

 }

 public class RecordingState implements PianoState {

private final List<NoteEvent> recording, lastRecording;

public RecordingState (List<NoteEvent> recording) {

this.lastRecording = recording;

this.recording = new ArrayList<NoteEvent>();

 }

public PianoState toggleRecording() {

return new PlayingState (recording);

 }

 public PianoState beginNote(NoteEvent event) {

midi.beginNote(event.getPitch().toMidiFrequency());

recording.add(event);

return this;

 }

 ...

 }

27© Daniel Jackson 2008

You just need to grok this code to figure out what’s going on. This pattern is a bit kinky but it can
be effective in some cases. Note how the constructor takes a state component as an argument. In
the (rare) ideal case, the state consists of just the main modes (such as Recording, Playing, etc), and
additional subcomponents that are fully nested within these modes and never cross from mode to
mode. But that doesn’t work here, because the recording sequence, for example, is created in the
Recording mode and then has to be remembered in other modes so that it can be played back later.
There is one nice example of nested state here, though: only one recording sequence is needed in
the other states, since it’s only in the recording mode that you need to distinguish the current and
last recording sequences.

I omitted the code for absorbing the key repeats here just to make this simpler. If I included it, I’d
have to add another state component and pass it around. Aagh!

example: machine

public interface PianoState {

public PianoState toggleRecording();

 ...

 }

 public class RecordingState implements PianoState {

private final List<NoteEvent> recording, lastRecording;

public RecordingState (List<NoteEvent> recording) {

this.lastRecording = recording;

this.recording = new ArrayList<NoteEvent>();

 }

public PianoState toggleRecording() {

return new PlayingState (recording);

 }

 public PianoState beginNote(NoteEvent event) {

midi.beginNote(event.getPitch().toMidiFrequency());

recording.add(event);

return this;

 }

 ...

 }

27© Daniel Jackson 2008

why is recording variable
(and not lastRecording)
passed to constructor of

new state?

You just need to grok this code to figure out what’s going on. This pattern is a bit kinky but it can
be effective in some cases. Note how the constructor takes a state component as an argument. In
the (rare) ideal case, the state consists of just the main modes (such as Recording, Playing, etc), and
additional subcomponents that are fully nested within these modes and never cross from mode to
mode. But that doesn’t work here, because the recording sequence, for example, is created in the
Recording mode and then has to be remembered in other modes so that it can be played back later.
There is one nice example of nested state here, though: only one recording sequence is needed in
the other states, since it’s only in the recording mode that you need to distinguish the current and
last recording sequences.

I omitted the code for absorbing the key repeats here just to make this simpler. If I included it, I’d
have to add another state component and pass it around. Aagh!

example: machine

public interface PianoState {

public PianoState toggleRecording();

 ...

 }

 public class RecordingState implements PianoState {

private final List<NoteEvent> recording, lastRecording;

public RecordingState (List<NoteEvent> recording) {

this.lastRecording = recording;

this.recording = new ArrayList<NoteEvent>();

 }

public PianoState toggleRecording() {

return new PlayingState (recording);

 }

 public PianoState beginNote(NoteEvent event) {

midi.beginNote(event.getPitch().toMidiFrequency());

recording.add(event);

return this;

 }

 ...

 }

27© Daniel Jackson 2008

why is recording variable
(and not lastRecording)
passed to constructor of

new state?

state machine
initialization is missing

from this fragment. where
does it go?

You just need to grok this code to figure out what’s going on. This pattern is a bit kinky but it can
be effective in some cases. Note how the constructor takes a state component as an argument. In
the (rare) ideal case, the state consists of just the main modes (such as Recording, Playing, etc), and
additional subcomponents that are fully nested within these modes and never cross from mode to
mode. But that doesn’t work here, because the recording sequence, for example, is created in the
Recording mode and then has to be remembered in other modes so that it can be played back later.
There is one nice example of nested state here, though: only one recording sequence is needed in
the other states, since it’s only in the recording mode that you need to distinguish the current and
last recording sequences.

I omitted the code for absorbing the key repeats here just to make this simpler. If I included it, I’d
have to add another state component and pass it around. Aagh!

example: machine

public interface PianoState {

public PianoState toggleRecording();

 ...

 }

 public class RecordingState implements PianoState {

private final List<NoteEvent> recording, lastRecording;

public RecordingState (List<NoteEvent> recording) {

this.lastRecording = recording;

this.recording = new ArrayList<NoteEvent>();

 }

public PianoState toggleRecording() {

return new PlayingState (recording);

 }

 public PianoState beginNote(NoteEvent event) {

midi.beginNote(event.getPitch().toMidiFrequency());

recording.add(event);

return this;

 }

 ...

 }

27© Daniel Jackson 2008

why is recording variable
(and not lastRecording)
passed to constructor of

new state?

state machine
initialization is missing

from this fragment. where
does it go?

handling of key repeats is

missing. how would it be

added?

You just need to grok this code to figure out what’s going on. This pattern is a bit kinky but it can
be effective in some cases. Note how the constructor takes a state component as an argument. In
the (rare) ideal case, the state consists of just the main modes (such as Recording, Playing, etc), and
additional subcomponents that are fully nested within these modes and never cross from mode to
mode. But that doesn’t work here, because the recording sequence, for example, is created in the
Recording mode and then has to be remembered in other modes so that it can be played back later.
There is one nice example of nested state here, though: only one recording sequence is needed in
the other states, since it’s only in the recording mode that you need to distinguish the current and
last recording sequences.

I omitted the code for absorbing the key repeats here just to make this simpler. If I included it, I’d
have to add another state component and pass it around. Aagh!

tradeo!s
advantages
‣ clean scoping of nested components
‣ in each mode, only the relevant subcomponents appear

disadvantages
‣ can’t handle orthogonal components
‣ need wrapper class to avoid exposing state-replacing mechanism
‣ like Switch on Enum, need to characterize states with one mode ‘variable’
‣ state components that persist across modes must be passed around
‣ allocate on every transition, or need to create singleton states

28© Daniel Jackson 2008

By orthogonal components, I mean that we have two components X and Y say, and the states are
formed as combinations (X,Y). By nested components, I mean that we have a component X with
values X1, X2, etc, and for each of these values we have some different substates: say values of a
component Y in X1, of a component Z in X2, etc. In a statechart, orthogonal components appear as
parallel submachines, and nested components appear as multiple states within a larger superstate.
The State as Object pattern handles nested components well, but doesn’t do well for orthogonal
components since they need to be passed around.

putting things together

elements

which pattern to use?
‣ machine as class doesn’t give the modularity we need
‣ state as object is clumsy here: too many components to pass around
‣ state as enumeration doesn’t help: not enough discrete states
‣ so choose machine as object

how to handle playback
‣ implement queue idea explained last time

modularity issues
‣ look at dependence diagram
‣ introduce interfaces for decoupling

30© Daniel Jackson 2008

queue idea, from last time

keyboard input javax.sound.midimy midi piano
event
queue

playback
events

idea
‣ playback generates press and release events
‣ merge these events on a queue with incoming keyboard events
‣ midi piano sees just one stream of events

31
© Daniel Jackson 2008

dependency diagram

PianoApplet PianoPlayer PianoMachine

NoteEvent

components
‣ PianoApplet: creates NoteEvents from key presses and passes to PianoPlayer
‣ PianoPlayer: maintains queue of events to be played
‣ PianoMachine: plays events, calls PianoPlayer to enqueue playback events

32© Daniel Jackson 2008

In a dependence diagram, an edge from A to B means that A knows about B and uses it: the name B
appears somewhere in the code of A, and calls to B are made by A.

Note the backedge from PianoMachine to PianoPlayer: that’s for playback and is due to the
PianoMachine inserting events into the queue of the PianoPlayer. All the main modules use
NoteEvent and its subclasses (not shown) because they all handle events.

event objects

public abstract class NoteEvent {

 protected final Pitch pitch;

 protected final int delay;

 public NoteEvent (Pitch pitch) {

 this (pitch, 0);

 }

 public NoteEvent (Pitch pitch, int delay) {

 this.delay = delay; this.pitch = pitch;

 }

 abstract public NoteEvent delayed (int delay);

 abstract public void execute (PianoMachine m);

 ...

}

public class BeginNote extends NoteEvent {

 public void execute (PianoMachine m) {

 m.beginNote (this);

 }

 public BeginNote delayed (int delay) {

 return new BeginNote (pitch, delay);

 } 33
© Daniel Jackson 2008

The delay field is used for the playback events. The idea is that we measure the elapsed time
between each pair of consecutive events, and attach that time to the second event. Then, when the
events are taken off the queue and played back, we wait that amount of time before playing the
event.

We’ll see in a minute how the execute method is used.

event objects

public abstract class NoteEvent {

 protected final Pitch pitch; what’s the delay

 protected final int delay; field for?

 public NoteEvent (Pitch pitch) {

 this (pitch, 0);

 }

 public NoteEvent (Pitch pitch, int delay) {

 this.delay = delay; this.pitch = pitch;

 }

 abstract public NoteEvent delayed (int delay);

 abstract public void execute (PianoMachine m);

 ...

}

public class BeginNote extends NoteEvent {

 public void execute (PianoMachine m) {

 m.beginNote (this);

 }

 public BeginNote delayed (int delay) {

 return new BeginNote (pitch, delay);

 } 33
© Daniel Jackson 2008

The delay field is used for the playback events. The idea is that we measure the elapsed time
between each pair of consecutive events, and attach that time to the second event. Then, when the
events are taken off the queue and played back, we wait that amount of time before playing the
event.

We’ll see in a minute how the execute method is used.

event objects

public abstract class NoteEvent {

 protected final Pitch pitch;

 protected final int delay;

 public NoteEvent (Pitch pitch) {

 this (pitch, 0);

 }

 public NoteEvent (Pitch pitch, int delay) {

 this.delay = delay; this.pitch = pitch;

 }

 abstract public NoteEvent delayed (int delay);

 abstract public void execute (PianoMachine m);

 ...

}

public class BeginNote extends NoteEvent {

 public void execute (PianoMachine m) {

 m.beginNote (this);

 }

 public BeginNote delayed (int delay) {

 return new BeginNote (pitch, delay);

 } 33© Daniel Jackson 2008

what’s the delay

field for?

note the execute

method

The delay field is used for the playback events. The idea is that we measure the elapsed time
between each pair of consecutive events, and attach that time to the second event. Then, when the
events are taken off the queue and played back, we wait that amount of time before playing the
event.

We’ll see in a minute how the execute method is used.

dispatcher

public class PianoApplet extends Applet {

 public void init() {

 final PianoPlayer player = new PianoPlayer();

 addKeyListener(new KeyAdapter() {

 public void keyPressed(KeyEvent e) {

 char key = (char) e.getKeyCode();

 switch (key) {

 case 'I': player.nextInstrument(); return;

 case 'P': player.requestPlayback(); return;

 case 'R': player.toggleRecording(); return;

 }

 NoteEvent ne = new BeginNote (keyToPitch (key));

 player.request (ne);

 }

 });

...}

34© Daniel Jackson 2008

Unlike in the earlier simplified example, PianoApplet calls PianoPlayer, not PianoMachine, since this
object holds the queues and handles the feedback.

player

public class PianoPlayer {

 private final BlockingQueue<NoteEvent> queue, delayQueue;

 private final PianoMachine machine;

 public PianoPlayer () {

 queue = new LinkedBlockingQueue<NoteEvent> ();

 delayQueue = new LinkedBlockingQueue<NoteEvent> ();

 }

public void request (NoteEvent e) {

 queue.put(e);

 }

public void requestPlayback (){

 machine.requestPlayBack();

}

 public void toggleRecording (){

 machine.toggleRecording();

 }

 machine = new PianoMachine(this);

 spawn processQueue (); // pseudocode

 spawn processDelayQueue (); // pseudocode

public void processQueue () {

 while (true) {

 NoteEvent e = queue.take();

 e.execute (machine);

 }

}

public void processDelayQueue () {

 while (true) {

 NoteEvent e = delayQueue.take();

 midi.Midi.wait (e.getDelay());

 queue.put(e);

 }

}

...}

public void playbackRecording (List<NoteEvent> recording) {

for (NoteEvent e: recording)

delayQueue.put(e);

}

35© Daniel Jackson 2008

There are two queues, one for events to be executed immediately (called just queue), and one for
events that are delayed (called delayQueue). There are two threads running here, one taking events
off each queue. The thread taking events off the delayed queue waits the appropriate amount of
time for each event, then puts it on the immediate queue. This way the events being played back
are timed appropriately but the manual keypresses are not kept waiting, since they go straight on
the immediate queue.

Now, seeing this code, you should be able to understand why the execute method of NoteEvent was
defined. Without the ‘receiver flipping’ (my term) in which a method call is made on an event, and
the event then calls the method on the state machine, we would have to write code here to handle
the cases for the different events (begin and end). This way, the cases are nicely separated into the
subclasses of NoteEvent.

how many threads are player running here?

public class PianoPlayer {

 private final BlockingQueue<NoteEvent> queue, delayQueue;

 private final PianoMachine machine;

 public PianoPlayer () {

 queue = new LinkedBlockingQueue<NoteEvent> ();

 delayQueue = new LinkedBlockingQueue<NoteEvent> ();

 }

public void request (NoteEvent e) {

 queue.put(e);

 }

public void requestPlayback (){

 machine.requestPlayBack();

}

 public void toggleRecording (){

 machine.toggleRecording();

 }

 machine = new PianoMachine(this);

 spawn processQueue (); // pseudocode

 spawn processDelayQueue (); // pseudocode

public void processQueue () {

 while (true) {

 NoteEvent e = queue.take();

 e.execute (machine);

 }

}

public void processDelayQueue () {

 while (true) {

 NoteEvent e = delayQueue.take();

 midi.Midi.wait (e.getDelay());

 queue.put(e);

 }

}

...}

public void playbackRecording (List<NoteEvent> recording) {

for (NoteEvent e: recording)

delayQueue.put(e);

}

35© Daniel Jackson 2008

There are two queues, one for events to be executed immediately (called just queue), and one for
events that are delayed (called delayQueue). There are two threads running here, one taking events
off each queue. The thread taking events off the delayed queue waits the appropriate amount of
time for each event, then puts it on the immediate queue. This way the events being played back
are timed appropriately but the manual keypresses are not kept waiting, since they go straight on
the immediate queue.

Now, seeing this code, you should be able to understand why the execute method of NoteEvent was
defined. Without the ‘receiver flipping’ (my term) in which a method call is made on an event, and
the event then calls the method on the state machine, we would have to write code here to handle
the cases for the different events (begin and end). This way, the cases are nicely separated into the
subclasses of NoteEvent.

how many threads are player running here?

public class PianoPlayer {

 private final BlockingQueue<NoteEvent> queue, delayQueue;

 private final PianoMachine machine;

 public PianoPlayer () {

 queue = new LinkedBlockingQueue<NoteEvent> ();

 delayQueue = new LinkedBlockingQueue<NoteEvent> ();

why two queues?

 machine = new PianoMachine(this);

 spawn processQueue (); // pseudocode

 spawn processDelayQueue (); // pseudocode

 }

public void request (NoteEvent e) {

 queue.put(e);

 }

public void requestPlayback (){

 machine.requestPlayBack();

}

 public void toggleRecording (){

 machine.toggleRecording();

 }

public void processQueue () {

 while (true) {

 NoteEvent e = queue.take();

 e.execute (machine);

 }

}

public void processDelayQueue () {

 while (true) {

 NoteEvent e = delayQueue.take();

 midi.Midi.wait (e.getDelay());

 queue.put(e);

 }

}

...}

public void playbackRecording (List<NoteEvent> recording) {

for (NoteEvent e: recording)

delayQueue.put(e);

}

35© Daniel Jackson 2008

There are two queues, one for events to be executed immediately (called just queue), and one for
events that are delayed (called delayQueue). There are two threads running here, one taking events
off each queue. The thread taking events off the delayed queue waits the appropriate amount of
time for each event, then puts it on the immediate queue. This way the events being played back
are timed appropriately but the manual keypresses are not kept waiting, since they go straight on
the immediate queue.

Now, seeing this code, you should be able to understand why the execute method of NoteEvent was
defined. Without the ‘receiver flipping’ (my term) in which a method call is made on an event, and
the event then calls the method on the state machine, we would have to write code here to handle
the cases for the different events (begin and end). This way, the cases are nicely separated into the
subclasses of NoteEvent.

how many threads are player	 running here?

public class PianoPlayer {

 private final BlockingQueue<NoteEvent> queue, delayQueue;

 private final PianoMachine machine;

 public PianoPlayer () {

 queue = new LinkedBlockingQueue<NoteEvent> ();

 delayQueue = new LinkedBlockingQueue<NoteEvent> ();

why two queues?

 machine = new PianoMachine(this);

 spawn processQueue (); // pseudocode

 spawn processDelayQueue (); // pseudocode

 }

public void request (NoteEvent e) {

 queue.put(e);

 }

public void requestPlayback (){

 machine.requestPlayBack();

}

 public void toggleRecording (){

 machine.toggleRecording();

 }

public void processQueue () {

 while (true) {

 NoteEvent e = queue.take();

 e.execute (machine);

 }

}

public void processDelayQueue () {

 while (true) {

 NoteEvent e = delayQueue.take();

 midi.Midi.wait (e.getDelay());

 queue.put(e);

 } why requeue the event in

public void playbackRecording (List<NoteEvent> recording) {

for (NoteEvent e: recording)

delayQueue.put(e);

}

35© Daniel Jackson 2008

There are two queues, one for events to be executed immediately (called just queue), and one for
events that are delayed (called delayQueue). There are two threads running here, one taking events
off each queue. The thread taking events off the delayed queue waits the appropriate amount of
time for each event, then puts it on the immediate queue. This way the events being played back
are timed appropriately but the manual keypresses are not kept waiting, since they go straight on
the immediate queue.

Now, seeing this code, you should be able to understand why the execute method of NoteEvent was
defined. Without the ‘receiver flipping’ (my term) in which a method call is made on an event, and
the event then calls the method on the state machine, we would have to write code here to handle
the cases for the different events (begin and end). This way, the cases are nicely separated into the
subclasses of NoteEvent.

 }

...}	 processDelayQueue? why

not just execute it directly?

how many threads are player	 running here?

 machine = new PianoMachine(this);

 spawn processQueue (); // pseudocode

 spawn processDelayQueue (); // pseudocode

public class PianoPlayer {

 private final BlockingQueue<NoteEvent> queue, delayQueue;

 private final PianoMachine machine;

 public PianoPlayer () {

 queue = new LinkedBlockingQueue<NoteEvent> ();

 delayQueue = new LinkedBlockingQueue<NoteEvent> ();

why two queues?

why the receiver flipping in
e.execute(m)?

 }

public void request (NoteEvent e) {

 queue.put(e);

 }

public void requestPlayback (){

 machine.requestPlayBack();

}

 public void toggleRecording (){

 machine.toggleRecording();

 }

public void processQueue () {

 while (true) {

 NoteEvent e = queue.take();

 e.execute (machine);

 }

}

public void processDelayQueue () {

 while (true) {

 NoteEvent e = delayQueue.take();

 midi.Midi.wait (e.getDelay());

 queue.put(e);

 } why requeue the event in

public void playbackRecording (List<NoteEvent> recording) {

for (NoteEvent e: recording)

delayQueue.put(e);

}

35© Daniel Jackson 2008

There are two queues, one for events to be executed immediately (called just queue), and one for
events that are delayed (called delayQueue). There are two threads running here, one taking events
off each queue. The thread taking events off the delayed queue waits the appropriate amount of
time for each event, then puts it on the immediate queue. This way the events being played back
are timed appropriately but the manual keypresses are not kept waiting, since they go straight on
the immediate queue.

Now, seeing this code, you should be able to understand why the execute method of NoteEvent was
defined. Without the ‘receiver flipping’ (my term) in which a method call is made on an event, and
the event then calls the method on the state machine, we would have to write code here to handle
the cases for the different events (begin and end). This way, the cases are nicely separated into the
subclasses of NoteEvent.

 }

...}	 processDelayQueue? why

not just execute it directly?

machine

 public class PianoMachine {

 private final PianoPlayer player;

 private final Midi midi;

 public PianoMachine(PianoPlayer player) {

 ...

 this.player = player;

 // this allows the dependence back edge

 }

 public void beginNote (NoteEvent event) {

 Pitch pitch = event.getPitch();

 if (pitchesPlaying.contains(pitch))

 return;

 pitchesPlaying.add(pitch);

 midi.beginNote(pitch.toMidiFrequency());

 addToRecording(event);

 // encapsulates adding delay to event

 }

 public void requestPlayBack () {

 player.playbackRecording(lastRecording);

 }

 ...

 }

36© Daniel Jackson 2008

The Midi state machine is implemented using Machine as Object; you can tell because the state of
PianoMachine includes an instance of Midi. It’s initialized in the constructor (although I omitted that
here because the code’s a bit lengthy as an exception needs to be handled).

The private method addToRecording (which is used here but whose declaration is not shown)

encapsulates the timing between events and setting the delays on the created events.

looking just at machine
PianoMachine, can

you guess what

 public class PianoMachine { state machine

 private final PianoPlayer player; pattern Midi uses?

 private final Midi midi;

 public PianoMachine(PianoPlayer player) {

 ...

 this.player = player;

 // this allows the dependence back edge

 }

 public void beginNote (NoteEvent event) {

 Pitch pitch = event.getPitch();

 if (pitchesPlaying.contains(pitch))

 return;

 pitchesPlaying.add(pitch);

 midi.beginNote(pitch.toMidiFrequency());

 addToRecording(event);

 // encapsulates adding delay to event

 }

 public void requestPlayBack () {

 player.playbackRecording(lastRecording);

 }

 ...

 }

36© Daniel Jackson 2008

The Midi state machine is implemented using Machine as Object; you can tell because the state of
PianoMachine includes an instance of Midi. It’s initialized in the constructor (although I omitted that
here because the code’s a bit lengthy as an exception needs to be handled).

The private method addToRecording (which is used here but whose declaration is not shown)

encapsulates the timing between events and setting the delays on the created events.

dependency design

music

piano

piano.PianoApplet

music.BeginNote

piano.PianoPlayer

piano.PianoMachine

music.Pitch

midi.Midi

midi.Instrument

midi

music.EndNote

music.NoteEvent

37
© Daniel Jackson 2008

Note the insidious backedge in the dependence diagram. This occurs because of that call in the
execute method of the subclasses of NoteEvent to a PianoMachine object. With this backedge
present, we don’t have a layered architecture: the lower layer depends on the upper layer, and we
couldn’t even compile the music package without having piano.PianoMachine around.

dependency design

why does music

depend on piano?

music

piano

piano.PianoApplet

music.BeginNote

piano.PianoPlayer

piano.PianoMachine

music.Pitch

midi.Midi

midi.Instrument

midi

music.EndNote

music.NoteEvent

37
© Daniel Jackson 2008

Note the insidious backedge in the dependence diagram. This occurs because of that call in the
execute method of the subclasses of NoteEvent to a PianoMachine object. With this backedge
present, we don’t have a layered architecture: the lower layer depends on the upper layer, and we
couldn’t even compile the music package without having piano.PianoMachine around.

interfaces to the rescue!

music.MusicMachine

piano.PianoMachine

music.BeginNote

how it works

‣ NoteEvent classes access PianoMachine through interface MusicMachine
‣ no longer dependent on PianoMachine
public interface MusicMachine {

 public void beginNote (NoteEvent event);

 public void endNote (NoteEvent event);

}

public class BeginNote extends NoteEvent {

 public void execute (MusicMachine m) {

 m.beginNote (this);

 }

 ...
}

38© Daniel Jackson 2008

We can eliminate the dependence by factoring out the properties of PianoMachine that NoteEvent
and its subclasses need: just the existence of two methods. Now a class like BeginNote no longer
has a dependence on piano.MusicMachine (even though it makes calls to it at runtime).

cutting the back edge

39
© Daniel Jackson 2008

music

piano

piano.PianoApplet

music.BeginNote

piano.PianoPlayer

piano.PianoMachine

music.Pitch

midi.Midi

midi.Instrument

midi

music.EndNote

music.NoteEvent

music.MusicMachine

Here’s the new dependency diagram. By adding the new interface in the music package, we’ve made
the music package no longer dependent on the piano package, and the system is now layered, so
that music could be reused independently of the other packages.

summary

what did we do?

four patterns, each with +’s and -’s
‣ most useful: machine as object
‣ good to know: state as object, state as enumeration
‣ usually avoid: machine as class

principle: layering is good
‣ cycles make programs hard to understand

principle: use interfaces for decoupling
‣ here, we broke a cycle by introducing an interface
‣ more on this in decoupling lecture later

41© Daniel Jackson 2008

puzzles for the enthusiastic

understanding midi piano code
‣	 [easy] The variable lastRecording is initialized in PianoMachine’s constructor. Is
this necessary? What alternatives are there?

‣	 [easy] What pattern is used to change color in the applet? Why isn’t this

done in the machine class?

‣	 [hard] PianoMachine does not modify lastRecording. Why is this significant?
‣	 [obscure] In state pattern of piano, why not put state = state.op() assignments
in the applet class, instead of adding a separate machine class?

42© Daniel Jackson 2008

Here are some puzzles for you to think about when you’re studying the code of the midi piano
(which is available in the repository). This is optional but you’ll learn a lot from trying to do it.

