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elements ofsoftwareconstruction 
state machine invariants 

Daniel Jackson 



plan for today 


topics 
� traffic lights: what safety means 
� state properties and invariants 
� reasoning about traffic lights 
� interlocks: runtime enforcement 
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The big ideas today are: the idea of formulating properties so you can check that a design does 

what you think it does; the idea of invariants, an incredibly powerful idea of widespread application 

in computer science; and the idea of interlocks, an architecture for enforcing invariants locally. 



traffic lights 




problem 


road works 
� road narrows to one lane 
� workers have flags but can’t see each other 

protocol 
� initially: one shows green, one shows red 
� worker gives last car a message and shows red 
� worker at other end gets message and shows green 

does it work? 

variants 
� passing the baton (used on railways) 

Figure by MIT OpenCourseWare.



state machine properties


what can we ask about a state machine? 
� safety: does it do anything bad? 

do cars crash in the middle? 
� liveness: does it do anything good? 

do cars ever get to go? 

in practice, liveness rarely useful 
� “eventually” isn’t good enough 
� “happens before midnight” is a safety property (“no chime before op”) 

how to formulate safety? 
� abstractly, every trace satisfies a property 
� concretely, every reachable state satisfies a property 

eg, not green in both directions 
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This is a classic distinction in computer science. The technical idea is that safety properties can be 

refuted by witnesses: you can show the judge the violating trace. But liveness properties have no 

finite witnesses: if I was foolish enough (to pick a random example :-) to buy a security that 

promised to pay me back eventually, but didn’t specify when, the my complaint can always be 

rebutted by the argument that I just haven’t waited long enough. Liveness properties such as not 

deadlocking are useful as necessary checks, because certainly if your interactive system can get into 

a state in which nothing subsequently happens, you’re in trouble. So they’re useful as general 

notions for algorithms. But for software engineering, liveness properties are never good enough, 

since eventually isn’t what you want, and when you formulate the property in terms of a deadline -­

the acknowledgement is sent within 1s -- it becomes a safety property (ie, that the clock does not 

advance one second before the ack happens). 

We’ve said that the behavior of a state machine is its trace set, and a nice, abstract way to formulate 

properties is to stick to the language of traces. In that case, a property is a predicate on traces that 

tells you “this trace is good, this trace is bad”. Or, equivalently, a property is a trace set, and the 

traces of the machine should be a subset. But in practice, we’re usually reasoning about the 

machine concretely, so it makes sense to express a property in terms of states. In general, we need 

“temporal properties” that say what kinds of transitions can happen. Much of the time, though, a 

simpler and very powerful idea is good enough. We just classify the states into good states 

satisfying some property and bad states that don’t, and we claim that every reachable state is in the 

good set. 



simpler traffic lights


consider simpler traffic lights first 
� one can’t go into waiting for green until other goes red 

parallel machine semantics: reminder 
� in each step, one event occurs 
� if event belongs to both machines, 
both must do the transition 

� if event belongs to just one, 
only that machine moves 
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r2 

g1 

r1 

R 
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W 

r1 

g2 

r2 
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Here’s a model for a simpler tra�c light scheme, without the message passing. We’ll consider it 

first as it’s easier to see what’s going on in a simpler model. Note that r1 and r2 are shared, but g1 

and g2 are not. So the machines have to synchronize on the r1 and r2 events, and make a transition 

together. We don’t allow one to sit idle while the other one takes one of those event steps. But on g 

events, the machines can move independently. You may wonder where these rules come from. 

They’re just one particular formalism that happens to work very nicely. Our syntax is actually based 

on David Harel’s Statecharts, but the semantic rule we’re using for how concurrent submachines 

execute is much simpler than the rule for Statecharts, and is based instead on Tony Hoare’s 

Communicating Sequential Processes. 



product machine


can form a single product machine

� states are tuples 
� one state from each machine 

“state explosion” 
� k machines of N states 
� product machine has Nk states 
� this is why concurrency is hard! 

WRRR GR 

WWRW GW 

WGRG GG 

g2 g2 g2 

g1 

g1 

g1 

r2 

r1 
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In this case, we can just draw the product machine. But if there were 3 machines of 10 states each 

-- not a much larger diagram -- the product machine would have 1000 states! 



traces revisited


WRRR GR 

WWRW GW 

WGRG GG 

g2 g2 g2 

g1 

g1 

g1 

r2 

r1 

what’s a trace? 
� a trace is an event history 
� machine has set of traces 
� includes empty trace 

example 
� traces of traffic light system include 

<>,

<r2>,

<r2, g1>,

<r2, g1, r1>,

<r2, g1, r1, g2>, ...
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You might want to check these traces against the diagram on slide 6 to check that you understand 

the parallel execution rule. 



checking traffic light property


WRRR GR 

WWRW GW 

WGRG GG 

g2 g2 g2 

g1 

g1 

g1 

r2 

r1 

what’s the traffic light property? 
� crucial property: never green both ways 

not GG 

how to check? 
� just look at product machine 
� color satisfying states yellow 
� check all reachable states are yellow 

but doesn’t scale 
� how would you do this for 3 parallel machines of 10 states each? 
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state properties & invariants




property as state set


state property is equivalently

� predicate P(s) applied to state s 

� subset {s: S | P(s)} of states 
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op2 

11 

The green coloring shows the states satisfying our property P. 

S3

S2

S1

S5

S4

S6

S6

S2

S3

S5

op2

op1

op1

S6

op2



invariant reasoning
how to check safety property?
‣ if diagram is small, just check every reachable state
‣ but if state machine is large, need better method

invariant reasoning
‣ check property holds in initial state
‣ check each operation “preserves” property
 property holds before ⇒ property holds after

‣ if so, property is “invariant”

example
‣ initial state is green, and each op preserves greenness
‣ so greenness is an invariant

12

Note that every green state has a green successor. So greenness is “preserved”.
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why invariants work 

strategy 
� check property holds in initial state (1) 

I(S0) 
� check that transitions preserve property (2) 

(s, e, s’) 㱨 R 㱸 I(s) 㱺  I(s’) 

� then property is an invariant, and holds in all reachable states 

why? 
� consider any trace 
� holds at start by (1) 
� can repeatedly add events using (2), and holds after each 
� (in general, this unfolding gives a tree: can you see why?) 
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Here’s the standard mathematical definition of state invariants. I’ve expressed it in terms of events 

e, but in practice, this technique is usually applied to a textual version of the state machine, and 

you consider take each operation at a time, and consider whether that operation preserves the 

invariant -- with the operation standing for all the events in the same event class (that is, the 

transitions with the same label). We won’t pursue this on state machine models, although you can 

see examples of it in the slides for Spring 2008. But we will do this for code when we come to 

representation invariants. 



tiling the chessboard 

a classic problem 
� 8 x 8 chessboard can be filled with 32 dominos 
� now remove top-left and bottom-right squares 
� can you tile remaining 62 squares with 31 dominos? 

invariant reasoning 
� consider number of black and white squares covered 
� invariant: #black = #white 
� initially, #black = #white = 0 
� only operation is placeDomino (loc) 
always adds 1 to #black and to #white, so it preserves the invariant 

� board with corners removed has 32 black, 30 white 
this state does not satisfy the invariant, so it’s not reachable 
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strengthening

S3

when property is not an invariant
‣ even though it holds for all reachable states
‣ need to strengthen the property
‣ typical feature of inductive reasoning

diagram (upper)
‣ op2 takes green S6 to non-green S4
‣ but S6 is not reachable!

diagram (lower)
‣ consider green-blue invariant
‣ now preserved, and green-blue => green
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In this machine (showing in both diagrams), greenness is not an invariant. But the green states that 
lead to non-green states aren’t reachable, so they shouldn’t matter. The way we account for that is 
by “strengthening” the property to make it an invariant, essentially adding information about 
reachability. Here, conceptually, we’ve strengthened the property to “green and blue”, and that’s 
now an invariant. We’ll see concrete examples of this soon.
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traffic light invariant


consider our property not GG 
� unfortunately, it’s not an invariant 
� consider the transition 

(GW, g2, GG) 
� property holds before but not after 
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WGRG GG 

g2 g2 g2 

g1 
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r1 
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Here’s the idea applied to our simple tra�c light system. The property we want to express is that 

both lights aren’t green at once -- shown in yellow. But this isn’t an invariant, because of the yellow 

to grey transition. It doesn’t matter because the originating state is not reachable, but we have to 

show that. 



getting to the invariant


what’s wrong? 
� need to strengthen the property 
� an invariant is 

R1 or R2 
� which implies 

not GG 

WRRR GR 

WWRW GW 

WGRG GG 

g2 g2 g2 

g1 

g1 

g1 

r2 

r1 
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Here’s how we rule out the unreachable states. We strengthen the property to say that at least one 

light shows red, and that is now an invariant. 

The RR state, btw, represents a deadlock. There’s no way out of it. Look back at slide 6 and check 

that you understand why. 

Note that for the purpose of invariant reasoning, you can shift the initial state to any state that 

satisfies it. So any of the yellow states in the cycle will do as starting states for the protocol. 



back to roadworks




state machine model


R 

G 

W 

send0 

recv0 

r0 

R 

G 

W 

send1 

recv1 

r1 

A 

B 

I 

recv1 send0 

send1 recv0 

designations 
r0: worker 0 raises red flag 

send0: worker 0 sends message to worker 1 

recv0: worker 0 receives message from worker 1 and raises green flag 
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Here’s the state machine model for the roadworks with message passing. The message passing 

mechanism is modelled explicitly by the machine on the far right. The convention in name events is 

that the numerical su�x says which machine does the event, so send0 means that 0 does the 

sending. 

An alternative would be to extend the formalism with asynchronous message passing, but it’s 

always better to stick to the simpler formalism you have if you can. In this case, modelling the 

message bu�er is easy. if we wanted to model an unbounded bu�er, we could use the textual 

notation, with a state component representing the bu�er that’s just like the variable we used in the 

midi-piano to record the sequence of events. An advantage of making the bu�ering explicit is that 

it then becomes easy to model various failure modes; if you wanted the protocol to be resistant to 

the dropping of messages, for example, you could just add a drop event with transitions from A to I 

and B to I, and check that the protocol still works. 



product machine


showing reachable states only 
� 27 possible state combinations, but only 6 reachable 
� getting harder to check reachable states by eye... 

GWI 
recv0


WWB 

send1 r0 

send0 r1


RWI WRI 

WWA 
recv1 

WGI 
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I had to step through the machine to extract these reachable states. It was much easier than it 

usually is, because there’s no non-determinism here: every state has only one successor. 



    

is the property an invariant?


the desired property is 
not GGx // x is informal way of saying that other process can have any state 

exercise 
� is this an invariant? 
� if not, find a violating transition 
� can this transition occur? 

solution 
� a violating transition is 

recv0 from WGB to GGI 
� can’t happen: when second process is green, no message waiting for first 
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After class, someone asked about a violating transition from GWB. That couldn’t happen because 

recv1 is not enabled in state B of the message bu�er. 



finding an invariant


exercise 
� strengthen the property to make it an invariant 

solution 
� add to property: if there’s a message in transit, both workers are waiting 

not GGx and (xxI or WWx) 

proof that this is invariant 
� only two ways to get to GGx: from WGx or from GWx 
� in either case, need recv event to occur 
� but recv event can only occur in xxA or xxB 
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Finding this invariant isn’t easy; an invariant like this usually captures the essence of the design --

in this case that whenever there is a message in motion both sides are waiting: the receiving side 

because it must be waiting to get the message, and the sending side because it starts waiting for 

the return message. 



modelling faults


possible faults 
� dropped message (driver forgets, or veers off road) 
� duplicated message (forged by mischievous driver) 

can we model these? 
� yes, make message submachine non-deterministic 
� add drop transitions from A and B to I 
� add dup transitions from I to A and B 

in practice, analysis is hard 
� use a tool such as a model checker to do it automatically 
� many such tools for state machines 
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For examples of model checkers, google: SMV, LTSA, SPIN, Pathfinder, FDR. 



interlocks




invariants are your friend


often they give you 
� the simplest way to express important properties 

can often be checked in code 
� with runtime assertions 

can be reasoned about 
� inductive reasoning especially powerful 
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interlocks


interlock of ‘gatekeeper’ 
� simplest way to maintain an invariant 
� check at runtime, and don’t let invariant be broken 

two approaches 
� pessimistic control: check before transition, and maybe disallow 
� optimistic control: check after transition, and undo it if bad 

key advantage 
� small module can enforce invariant in large system (“small trusted base”) 
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The terms “optimistic” and “pessimistic” are usually applied more narrowly in the area of 

transactions and concurrency control: how to deal with concurrent users of a database or shared 

resource. 



Therac-25 accident 

Therac-25 radiotherapy machine 
� two modes: electron beam and xray 
� rotating turntable with 3 positions 
� two power levels, lo and hi 
� invariant: in X-ray mode, use flattener 

power = HI 㱺 turntable = FLATTENER 

what happened 
� earlier version had hardware interlocks 
� software had concurrency bug 
� invariant violated and 6 patients overdosed, of whom at least 3 died 

diagram from Nancy Leveson, “The Therac-25 Accidents”; see http://sunnyday.mit.edu/papers/therac.pdf 
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Courtesy of Nancy Leveson. Used with permission.

http://sunnyday.mit.edu/papers/therac.pdf


is your PC secure?


typical patch size 
� 100MB 

typical time to download 
� 10 minutes 

average time to infection* 
� 4 minutes 

* [Windows XP, default firewall settings] Unprotected PCs Fall To Hacker Bots In Just Four Minutes 
Gregg Keizer; Nov 30, 2004; 
From: Security Absurdity: The Complete, Unquestionable, And Total Failure of Information Security 
Noam Eppel; 
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buffer overflows


problem of buffer overflows 
� a major source of security vulnerabilities 
� huge cost to industry and individuals 

how they work 
� program reads messages into buffer of fixed capacity 
� buffer is stack allocated; below it is return address for call 
� rogue agent passes big message 
� buggy code writes message over return address 
� return address is replaced by address of code inside message 
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how to avoid overflows


interlocks 
� invariant: buffer size < buffer capacity 
� check before writing message into buffer 
� eg, for each array update, check bounds 

a[i] = e // only if 0 ≤ i < MAX 

so why don’t people do this? 
� most programs in “unsafe” languages like C that don’t check bounds 
� programmers say too costly to check (but cost of not checking?) 

lesson 
� add an interlock (with a safe language, or a data abstraction) 
� or prove invariant preservation 
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why not interlocks?


interlocks 
� are great when they’re possible 
� but they don’t always fit the context 

problem areas 
� rejecting events makes things complicated (and users unhappy) 
� doing the check might damage performance 

eg: database index is properly ordered 
� may not be able to see the state 

state is distributed, so nobody has global view

eg. node can’t see state of whole network


state cannot be read at all

eg. radiotherapy machine can’t read dose received by patient


31© Daniel Jackson 2008 

Interlocks are very useful, and you should use them as much as you can. At the lowest level, this 

just means making good use of runtime assertions in your code. But at a higher level, you should 

think when you design a system about what properties are most critical, and whether you could 

ensure them by a localized check. Another nice example of an interlock is doing a checksum in a 

file transfer protocol: when you’ve transferred the file, you can compute the checksum, and get an 

immediate confirmation that the transfer worked. If it didn’t, you just run it again. 



summary




principles


design = model + properties 
� whenever you design a behavior 
� ask what properties you expect it to have 
� the power of redundancy 

invariants are your friend 
� give modular reasoning 
� more on this later in the course 

interlocks reduce trusted base 
� enforce a property locally 
� then less code to worry about 
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backup slides




DOSEREQ DOSEDONE WRITEREQdose reqWrite

example: radiotherapy


START 

END 

reqDose 

write 

end 
fail 

problem & approach 
� want to deliver dose and record on disk, but both may fail 
� so break dose into small segments, and alternate deliver/record 

given specs op dose: post d’ == d+1 op write: post r’ == r + 1

prove d - r ≤ 1
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Here’s a very simple example of invariant reasoning for a textual state machine. The problem -- a 

very real one -- is to record how much radiation has been given to a patient, when the action that 

delivers the dose, and the action that records it to disk, can both fail. The solution is to deliver the 

dose in small bits. If you always write after you dose, and the dose increment is 1, you can prove 

the invariant that the delivered dose d is always at most one greater than the recorded dose. 

DOSEREQ DOSEDONE WRITEREQdose reqWrite


