MIT OpenCourseWare
lhttp://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2008

For information about citing these materials or our Terms of Use, visit: [http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

principles and concepts of system design
» modularity

» decoupling

» information hiding

a new notation

» module dependency diagram

case study: designing a stock quoter
» using interfaces to decouple modules

Decoupling and Interfaces

Rob Miller
Fall 2008
© Robert Miller 2008 © Robert Miller 2007

problem tasks, for each ticker symbol:
» obtain stock quotes for some ticker symbols » download quote information from web site
» produce both RTF and HTML output » parse to extract stock quotes
» put the ask price in bold if the change since openis 2+ 1% » write to file in RTF or HTML format

[eos myQuotes bl e0e i parsing

file: /] [Users fdnj/Filestore/Teachi = Q- » J.!\‘e mm»lln‘?'lﬂm:il Currendy Facing ars. .’7‘1 e
£ AcM Erictianer Photo B AAPL dpenea atrin s s eueney rang at 13070 > minimize parsing by choosing a site with a simple format
00090 | MEFT. et af 2870 and IS currently rading af 28.33 .
L mvosccenmom . o e » Yahoo offers stock quotes in comma-separated-values (CSV) format

JAVA: opened ar 8.T2 and s currently wading ar 5,72 |
INTC: apened at 24.95 and is currently mading a1 25,12
AAPL: apened at 138,96 and is currently ading at 138.70 eéxample
DR LHOPOON A1 a% L N W CRTIIN IRl B 200 » http://quote.yahoo.com/d/quotes.csvls=aapl&f=noa

» returns the string “APPLE INC”,130.75,125.20

© Robert Miller 2007 © Robert Miller 2007

�http://quote.yahoo.com/d/quotes.csv?s=aapl&f=noa

ublic class Quoter 8
g private URLQurI - ¢ < | whyare the fields of

private String open, ask; Quoter private?
private int change;

public Quoter (String symbol) throws MalformedURLException {
url = new URL("http://quote.yahoo.com/d/quotes.csv?s="

+symbol+"&f=noa’);

} Quoter is a state machine.
public String getOpen () {return open;} Draw it. What design
public String getAsk () {return ask;} pattern does it use?

public int getChange () {return change;}
public void obtainQuote () throws I0Exception {
BufferedReader in = new Buf‘feredReader((%mputstreamReader(url.open..));
?H;Tgszz; in-readLine0; BufferedReader is also
a state machine.
String[] fields = csv.split(",”); Draw it. What design

open = fields[1]; pattern does it use?
ask = fields[2];

change = (int)(100 *(Float.valueOf(ask)-Float.valueOf(open))
/ Float.valueOf(open));
3} © Robert Miller 2007

modularity is essential for managing complexity

» system is divided into parts (modules) that can be handled separately and
recombined in other combinations

coupling
» degree of dependence between parts of the system
» an important measurement of modularity

decoupling achieved so far

» the website (Yahoo) and its format (CSV) have been decoupled from the
rest of the system

next step
» design the part of the system that generates the report
» report can be either HTML or RTF

© Robert Miller 2007

just build two formatters that use Quoter
public class HTMLFormatter {
private final Set<String> symbols = new HashSet<String> ();

public void generateOutput () throws 10Exception {
PrintStream out = new PrintStream(new FileOutputStream (...));
out._printIn('<html>");
for (String symbol: symbols) {
Quoter g = new Quoter (symbol);
q.obtainQuote();
out.printin(symbol + ": "
+ "<i>opened at</i> " + q.getOpen ()
+ "<i> and is currently trading at </i>");
boolean bigChange = Math.abs (g.getChange()) >= 1;
if (bigChange) out.printin('");
out._printin(g.getAsk));

if (bigChange) out.printin('"); How would the RTF

out.printin('
"y; version differ? What’s
3} undesirable about this
out.close(Q); choice?

} © Robert Miller 2007

build one formatter that takes a flag (RTF or HTML)

» tests flag to determine flow of control

public class Formatter {
public enum Format { HTML, RTF }; Is this a wise
private final Format format; way to test the
-- format flag?
public void generateOutput () throws I10Exception {
PrintStream out = new PrintStream(new FileOutputStream ()/
out_printin(format == HTML ? “<htmI>* - "{\\rtfl\\mac*);

for (String symbol: symbols) {

boolean bigChange = Math.abs (qg.getChange()) >= 1;

if (bigChange) out.printin(format == HTML ? *'* : "\\F\\b*“);
out.printin(g.getAsk);
if (bigChange) out.printin(format == HTML ? "“ : "\\f\\b0*“);
out_printIn('
");
} .
What’s undesirable about this choice?
}
¥ © Robert Miller 2007

factor out responsibilities for report generation
» generator: knows how to put in bold, italics, etc.
» formatter: knows what to put in bold, italics, etc.

designing the generator

» make it a state machine!

» two versions, one RTF and one HTML
» but same interface

© Robert Miller 2007

localize each design decision in exactly one place

» more crudely:“don’t repeat yourself”

why?
» ready for change: if decision needs to change, there’s only one place

» ease of understanding: don’t have to think about the details of that decision
when working on the rest of the system

» safety from bugs: fewer places to change means less chance of omission

variations on the same idea

» Information hiding: localizing design decision and protecting the rest of the
system from it

» Encapsulation: wrapping code up into a module that hides information

» Separation of concerns: responsibility for a feature is given to one module,

not spread across system
© Robert Miller 2007

key design idea

» develop generic interface for text formatting

N Y

OPEN PLAIN | ROMAN
write, <_/ :
newline : |
i toggleBold toggleBold | toggleltalic toggleltalic
close : :
| |
CLOSED i BOLD |/ : ITALIC

© Robert Miller 2007

public class RTFGenerator implements Generator {
private boolean italic;
private boolean bold;
private final String filename;
private PrintStream stream;

public RTFGenerator (String filename) {
this.filename = filename; }

public void open() throws FileNotFoundException {
FileOutputStream fos = new FileOutputStream (filename);
stream = new PrintStream(fos);
stream.println ("{\\rtfl\\mac™); }

public void close() {
stream.println ("}"); stream.close(); }

public void newLine () {
stream.println ("\\"); }

public void toggleBold() {
stream.println (bold ? "\\f\\b0" : "\\T\\b");

bold = !bold; }

© Robert Miller 2007

how to make formatter independent of generator?
» we want them decoupled

» so we can plug in different generators

» without changing the formatter’s code

solution

» formatter doesn’t refer to a particular generator class
» it refers to an interface instead

© Robert Miller 2007

what we want how does formatter refer to

» two ways to configure formatter generators!?
» with an interface

formatter

formatter ~ formatter
l uses
RTF HTML

generator generator

generator

implements
RTF HTML

generator generator

© Robert Miller 2007

J**
* Interface for generator with basic text formatting.
* Typically a stream is passed to the constructor.

*/
public interface Generator {
public void open () throws Exception;
public void close ();
public void newLine);
public void toggleBold ();
public void toggleltalic (;
public void write (String s);

}

public class RTFGenerator implements Generator {
public void open() throws FileNotFoundException { ... }
---}

public class HTMLGenerator implements Generator {
public void open() throws FileNotFoundException { ... }

© Robert Miller 2007

public class QuoteFormatter {
private final Set<String> symbols = new HashSet<String> ();
private final Generator generator;

an object implementing
public QuoteFormatter(Generator generator) { | Generator is plugged into
this.generator = generator ; the formatter

3
public void addSymbol (String symbol) {
symbols.add (symbol);
3
public void generateOutput () throws Exception {
generator.open ;
for (String symbol: symbols) {
Quoter g = new Quoter (symbol);
g.obtainQuote(); 4\ no mention of HTMLGenerator
generator.write (symbol + ": ™); or RTFGenerator anywhere!
generator.toggleltalic Q;
generator.write (“opened at ");
generator.toggleltalic Q;

generator.close();
3
3

© Robert Miller 2007

public class QuoteApp {

public static void main(String[] args) throws Exception {
Generator rtfg = new RTFGenerator (‘'myQuotes.rtf’);
QuoteFormatter formatter = new QuoteFormatter(rtfg);

dependency diagram
» arc means “depends on”

P
invokes QuoteFormatter with

tickers & selects output format

=

formatter.addSymbol (AAPL™);
Fformatter.addSymbol ("'INTC™); plugin is selected here
formatter.addSymbol ('JAVA™);

formatter.addSymbol ('MSFT™);

formatter.generateOutput);

Generator htmlg = new HTMLGenerator (“myQuotes.html™);
formatter = new QuoteFormatter(htmlg);
formatter.addSymbol ('AAPL™);

formatter.addSymbol (INTC™);

formatter.addSymbol ('JAVA™);

formatter.addSymbol (*MSFT™);
formatter._generateOutput);

© Robert Miller 2007

obtains and outputs quotes QuoteApp

< -

QuoteFormatter —> Generator ’

A

Quoter HTMLGenerator ‘ RTFGenerator Z
/ J—]
obtains quotes } formats text in HTML [formats text in RTF
© Robert Miller 2007

which modules would you need to modify to...
> handle new RTF syntax for italics?

» put the ask price in bold if the stock went down since open?
» use Google Finance instead of Yahoo?

» add year-to-date change to the report!

© Robert Miller 2007

a general strategy

» client should only know about the specification of the service it uses
» so decouple the client from the service by interposing the specification
in Java:

» the specification is declared by an interface

» the service is plugged in by passing an object implementing that interface

specification is a contract
» we'll see more about this idea in later lectures

© Robert Miller 2007

decoupling from choice of representation

» very common and important
List<NoteEvent> recording = new ArrayList<NoteEvent>();
recording.add(...);

List<NoteEvent> recording = new LinkedList<NoteEvent> ();
recording.add(...);

“marker” interfaces

» declare no methods

» used to expose specification properties (e.g. java.util.RandomAccess)
» or as a hack to add functionality (e.g. java.io.Serializable)

© Robert Miller 2007

system design principles

» modularity

» decoupling using interfaces

dependency diagrams

» show essence of code design

» missing dependences are the interesting ones!

© Robert Miller 2007

