
MIT OpenCourseWare
http://ocw.mit.edu 

6.005 Elements of Software Construction 
Fall 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu/terms
http://ocw.mit.edu


6.005
elements ofsoftwareconstruction 

how to design a SAT solver, part 1 

Daniel Jackson 



plan for today 


topics 
� demo: solving Sudoku 
� what’s a SAT solver and why do you want one? 
� new paradigm: functions over immutable values 
� big idea: using datatypes to represent formulas 

today’s patterns 
� Variant as Class: deriving class structure 
� Interpreter: recursive traversals 

2© Daniel Jackson 2008 



what’s a SAT solver? 




what is SAT? 

the SAT problem 
� given a formula made of boolean variables and operators 

(P 㱹 Q) 㱸 (¬P 㱹 R) 
� find an assignment to the variables that makes it true 
� possible assignments, with solutions in green, are: 

{P = false, Q = false, R = false} 


{P = false, Q = false, R = true} 


{P = false, Q = true, R = false} 


{P = false, Q = true, R = true} 


{P = true, Q = false, R = false} 

{P = true, Q = false, R = true} 

{P = true, Q = true, R = false} 

{P = true, Q = true, R = true} 

4© Daniel Jackson 2008 



what real SAT solvers do 


conjunctive normal form (CNF) or “product of sums” 

� set of clauses, each containing a set of literals 

{{P, Q}, {¬P, R}} 
� literal is just a variable, maybe negated 

SAT solver 
� program that takes a formula in CNF 
� returns an assignment, or says none exists 

5© Daniel Jackson 2008 



SAT is hard 


how to build a SAT solver, version one 
� just enumerate assignments, and check formula for each 
� for k variables, 2k assignments: surely can do better? 

SAT is hard 
� in the worst case, no: you can’t do better 
� Cook (1973): 3-SAT (3 literals/clause) is “NP-complete” 
� the quintessential “hard problem” ever since 

how to be a pessimist 
� suppose you have a problem P (that is, a class of problems) 
� show SAT reducible to P (ie, can translate any SAT-problem to a P-problem) 
� then if P weren’t hard, SAT wouldn’t be either; so P is hard too 

6© Daniel Jackson 2008 



SAT is easy 


#boolean vars SAT solver can handle 
(from Sharad Malik) 

Courtesy of Sharad Malik. Used with permission. 

remarkable discovery 
� most SAT problems are easy 
� can solve in much less than exponential time 

how to be an optimist 
� suppose you have a problem P 
� reduce it to SAT, and solve with SAT solver 

7© Daniel Jackson 2008 



� 

� 

� 

� 

� 

� 

� 

applications of SAT 
configuration finding 

solve (configuration rules 㱸 partial solution) to obtain configuration 
� eg: generating network configurations from firewall rules 
� eg: course scheduling (http://andalus.csail.mit.edu:8180/scheduler/) 

theorem proving 

solve (axioms 㱸 ¬ theorem): valid if no assignment 

hardware verification: solve (combinatorial logic design 㱸 ¬ specification) 


model checking: solve (state machine design 㱸 ¬ invariant) 

code verification: solve (method code 㱸 ¬ method spec) 

more exotic application 

solve (observations 㱸 design structure) to obtain failure info 

(http://andalus.csail.mit.edu:8180/scheduler/)


why are we teaching you this?


SAT is cool 
� good for (geeky) cocktail parties 
� you’ll build a Sudoku solver for Exploration 2 
� builds on your 6.042 knowledge 

fundamental techniques 
� you’ll learn about datatypes and functions 
� same ideas will work for any compiler or interpreter 

9© Daniel Jackson 2008 



the new paradigm




from machines to functions


6.005, part 1 
� a program is a state machine 
� computing is about taking state transitions on events 

6.005, part 2 
� a program is a function 
� computing is about constructing and applying functions 

an important paradigm 
� functional or “side effect free” programming 
� Haskell, ML, Scheme designed for this; Java not ideal, but it will do 
� some apps are best viewed entirely functionally 
� most apps have an aspect best viewed functionally 

11© Daniel Jackson 2008 



immutables


like mathematics, compute over values 
� can reuse a variable to point to a new value 
� but values themselves don’t change 

why is this useful? 
� easier reasoning: f(x) = f(x) is true 
� safe concurrency: sharing does not cause races 
� network objects: can send objects over the network 
� performance: can exploit sharing 

but not always what’s needed 
� may need to copy more, and no cyclic structures 
� mutability is sometimes natural (bank account that never changes?) 
� [hence 6.005 part 3] 

12© Daniel Jackson 2008 



datatypes: describing 
structured values 



modeling formulas 

problem 
� want to represent and manipulate formulas such as 

(P 㱹 Q) 㱸 (¬P 㱹 R) 

� concerned about programmatic representation 
� not interested in lexical representation for parsing 

how do we represent the set of all such formulas? 
� can use a grammar, but abstract not concrete syntax 

datatype productions 
� recursive equations like grammar productions 
� expressions only from abstract constructors and choice 
� productions define terms, not sentences 

14© Daniel Jackson 2008 



example: formulas 

productions 
Formula = OrFormula + AndFormula + Not(formula:Formula)+ Var(name:String)


OrFormula = OrVar(left:Formula,right:Formula)


AndFormula = And(left:Formula,right:Formula)


sample formula: (P 㱹 Q) 㱸 (¬P 㱹 R) 
� as a term: 

And(Or(Var(“P”), Var(“Q”)), (Not(Var(“P”)), Var(“R”))) 

sample formula: Socrates 㱺Human 㱸 Human㱺Mortal 㱸 ¬ (Socrates 㱺Mortal) 
� as a term: 

And(Or(Not(Var(“Socrates”)),Var(“Human”)),

And (Or(Not(Var(“Human”)),Var(“Mortal”)),


Not(Or(Not(Var(“Socrates”)),Var(“Mortal”)))))


15© Daniel Jackson 2008 



drawing terms as trees


“abstract syntax tree” (AST) for Socrates formula


16 

And 

Lit(H) 

Lit(S) 

Or 

Not 

And 

Lit(M) 

Lit(H) 

Or 

Not 

Not 

Lit(M) 

Lit(S) 

Or 

Not 

© Daniel Jackson 2008


And

AndOr

Not Lit(H) Or

OrLit(S) Not Lit(M)

Lit(H) Not Lit(M)

Lit(S)

Not



other data structures


many data structures can be described in this way 
� tuples: Tuple = Tup (fst: Object, snd: Object) 
� options: Option = Some(value: Object) + None 
� lists: List = Empty + Cons(first: Object, rest: List) 
� trees: Tree = Empty + Node(val: Object, left: Tree, right: Tree) 
� even natural numbers: Nat = 0 + Succ(Nat) 

structural form of production 
� datatype name on left; variants separated by + on right 
� each option is a constructor with zero or more named args 

what kind of data structure is Formula? 

17© Daniel Jackson 2008 



exercise: representing lists


writing terms 
� write these concrete lists as terms 

[] -- the empty list 

[1] -- the list whose first element is 1 

[1, 2] -- the list whose elements are 1 and 2 

[[1]] -- the list whose first element is the list [1] 

[[]] -- the list whose first element is the empty list 

note 
� the empty list, not an empty list 
� we’re talking values here, not objects 

18© Daniel Jackson 2008 



philosophical interlude

what do these productions mean? 

definitional interpretation (used for designing class structure) 
� read left to right: an X is either a Y or a Z ... 

read List = Empty + Cons(first: Nat, rest: List) 

as “a List is either an Empty list or a Cons of a Nat and a List” 

inductive interpretation (used for designing functions) 
� read right to left: if x is an X, then Y(x) is too ... 

“if l is a List and n is a Nat, then Cons(n, l) is a List too” 

aren’t these equations circular? 
� yes, but OK so long as List isn’t a RHS option 
� definitional view: means smallest set of objects satisfying equation 

otherwise, can make Banana a List; then Cons(1,Banana) is a list too, etc. 
19© Daniel Jackson 2008 



polymorphic datatypes


suppose we want lists over any type 
� that is, allow list of naturals, list of formulas 
� called “polymorphic” or “generic” lists 

List<E> = Empty + Cons(first: E, rest: List<E>) 
� another example 

Tree<E> = Empty + Node(val: E, left: Tree<E>, right: Tree<E>) 

20© Daniel Jackson 2008 



classes from datatypes




Variant as Class pattern

exploit the definitional interpretation 
� create an abstract class for the datatype 
� and one subclass for each variant, with field and getter for each arg 

example 
� production 

List<E> = Empty + Cons (first: E, rest: List<E>) 
� code 

public abstract class List<E> {}


public class Empty<E> extends List<E> {}


public class Cons<E> extends List<E> {


� private final E first; 

� private final List<E> rest; 

� public Cons (E e, List<E> r) {first = e;rest = r;} 

� public E first () {return first;} 

� public List<E> rest () {return rest;}


}


22© Daniel Jackson 2008 



class structure for formulas

formula production 

Formula = Var(name:String) + Not(formula: Formula)
 + Or(left: Formula,right: Formula) + And(left: Formula,right: Formula) 

code public abstract class Formula {} 
public class AndFormula extends Formula {


private final Formula left, right;

public AndFormula (Formula left, Formula right) {


this.left = left; this.right = right;}

}


public class OrFormula extends Formula {

private final Formula left, right;


public OrFormula (Formula left, Formula right) {

this.left = left; this.right = right;}


}

public class NotFormula extends Formula {


private final Formula formula;

public NotFormula (Formula f) {formula = f;}


 }

public class Var extends Formula {


private final String name;

public Var (String name) {this.name = name;}


} 

23© Daniel Jackson 2008 



functions over datatypes




Interpreter pattern

how to build a recursive traversal 
� write type declaration of function 

size: List<E> -> int 
� break function into cases, one per variant 

List<E> = Empty + Cons(first:E, rest: List<E>)


size (Empty) = 0

size (Cons(first:e, rest: l)) = 1 + size(rest)


� implement with one subclass method per case 
public abstract class List<E> { 

� public abstract int size (); 
} 

public class Empty<E> extends List<E> { 
� public int size () {return 0;} 

} 
public class Cons<E> extends List<E> { 

� private final E first; 
� private final List<E> rest; 

� public int size () {return 1 + rest.size();} 
} 

25© Daniel Jackson 2008 



�	 � � }


caching results


look at this implementation 
� representation is mutable, but abstractly object is still immutable! 

public abstract class List<E> { 

�	 int size; 

�	 boolean sizeSet; 

� public abstract int size ();


}


public class Empty<E> extends List<E> {


� public int size () {return 0;}


}


public class Cons<E> extends List<E> {


�	 private final E first; 

�	 private final List<E> rest; 

�	 public int size () { 

� � if (sizeSet) return size; 

� � � � int s = 1 + rest.size(); 

� � � � size = s; sizeSet = true; 

� � � � return size; 

}


26© Daniel Jackson 2008 



�	 � } 

size, finally


in this case, best just to set in constructor 
� can determine size on creation -- and never changes* because immutable 

public abstract class List<E> { 

� int	size; 

� public int size () {return size;} 

public class Empty<E> extends List<E> { 

� public EmptyList () {size = 0;}


}


public class Cons<E> extends List<E> {


� private final E first; 

� private final List<E> rest; 

� private Cons (E e, List<E> r) {first = e;rest = r;size = r.size()+1} 

} 

*so why can’t I mark it as final? ask the designers of Java ... 

27© Daniel Jackson 2008 



summary




summary


big ideas 
� SAT: an important problem, theoretically & practically 
� datatype productions: a powerful way to think about immutable types 

patterns 
� Variant as Class: abstract class for datatype, one subclass/variant 
� Interpreter: recursive traversal over datatype with method in each subclass 

where we are 
� now we know how to represent formulas 
� next time: how to solve them 

29© Daniel Jackson 2008 




