MIT OpenCourseWare
http://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2008

For information about citing these materials or our Terms of Use, visit: [http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Debugging

Rob Miller
Fall 2008

© Robert Miller 2008

10/15/2008

how to avoid debugging
» assertions
» code reviews

how to do it when you have to
» reducing test cases

» hypothesis-driven debugging

» binary search

very hard bugs
» Heisenbugs

© Robert Miller 2008

first defense against bugs is to make them impossible
» Java makes buffer overflow bugs impossible

second defense against bugs is to not make them

» correctness: get things right first time

third defense is to make bugs easy to find

» local visibility of errors: if things fail, we'd rather they fail loudly and
immediately — e.g. with assertions

fourth defense is extensive testing
» uncover as many bugs as possible
last resort is debugging

» needed when effect of bug is distant from cause

© Robert Miller 2008

in the language

» automatic array bounds checking make buffer overflow bugs impossible
» static typing eliminates many runtime type errors

in the protocols/libraries/modules

» TCP/IP guarantees that data is not reordered

» Biglnteger guarantees that there will be no overflow

in self-imposed conventions

» immutable objects can be passed around and shared without fear

» caution: you have to keep the discipline

* get the language to help you as much as possible , e.g. with private and
final

© Robert Miller 2008

get things right the first time
» don’t code before you think! Think before you code.

* do your thinking in design; use a pattern to map that design to code
especially true when debugging is going to be hard
» concurrency
simplicity is key
» modularity

* divide program into chunks that are easy to understand

* use abstract data types with well-defined interfaces

* avoid rep exposure
» specification

* write specs for all modules, so that an explicit, well-defined contract
exists between each module and its client

© Robert Miller 2008

10/15/2008

if we can't prevent bugs, we can try to localize them to
a small part of the program
» fail fast: the earlier a problem is observed, the easier it is to fix

» assertions: catch bugs early, before failure has a chance to contaminate (and
be obscured by) further computation

* in Java: assert boolean-expression
* note that you must enable assertions with -ea

» unit testing: when you test a module in isolation, you can be confident that
any bug you find is in that unit (or in the test driver)

» regression testing: run tests as often as possible when changing code.

* if a test fails, the bug is probably in the code you just changed
when localized to a single method or small module,
bugs can be found simply by studying the program text

© Robert Miller 2008

/*
* Returns n!, the number of permutations of n objects.
* n must be nonnegative.

*/

public static int fact(int n) { where would
if (n == 0) return 1; assertions be
else return n * fact(n-1); usefully added

} to this code?

/*

* Returns (n choose k), the number of distinct subsets
* of size k in a set of size n.
* Requires 0 <= k <= n.
*/
public static int combinations(int n, int k) {
return fact(n) / (fact(k) * fact(n-k));
3

© Robert Miller 2008

other eyes looking at the code can find bugs

code review

» careful, systematic study of source code by others (not original author)
» analogous to proofreading an English paper

» look for bugs, poor style, design problems, etc.

» formal inspection: several people read code separately, then meet to
discuss it

» lightweight methods: over-the-shoulder walkthrough, or by email
» many dev groups require a code review before commit

code review complements other techniques

» code reviews can find many bugs cheaply

» also test the understandability and maintainability of the code

» three proven techniques for reducing bugs: reasoning, code reviews,
testing

© Robert Miller 2008

public class PigLatin {
static String[] words;

public static String toPigLatin(String s) {
words = s.split(" ");

String result = ";

for (int i = 0; i <= words.length; ++i) {
piggify(i);
result += words[i];

¥

return result;

b

public static void piggify(int i) {

if (words[i].startsWith('a™) || words[i].startsWith('e™) || --

words[i] += "yay";

} else {
words[i] = words[i].substring(l);
words[i] += words[i].charAt(0) + "ay";

© Robert Miller 2008

DR

10/15/2008

1) reproduce the bug with a small test case

» find a small, repeatable test case that produces the failure (may take effort,
but helps clarify the bug, and also gives you something for regression)

» don't move on to next step until you have a repeatable test

2) find the cause

» narrow down location and proximate cause

» study the data / hypothesize / experiment / repeat

» may change code to get more information

» don't move on to next step until you understand the cause

3) fix the bug

> is it a simple typo, or is it a design flaw? does it occur elsewhere?

4) add test case to regression tests

» then run regression tests to ensure that the bug appears to be fixed, and
no new bugs have been introduced by the fix

find simplest input that will provoke bug

» usually not the input that originally revealed existence of the bug
» start with data that revealed bug

» keep paring it down (binary search can help)

» often leads directly to an understanding of the cause

same idea is useful at many levels of a system

» method arguments

» input files

» keystrokes and mouse clicks in a GUI

© Robert Miller 2008

© Robert Miller 2008
Jxx
* Returns true if and only if s contains t as a substring,
* e.g. contains(hello world”, "world") == true.
*/
public static boolean contains(String s, String t) { ... }

» a user discovers that
contains("Life is wonderful! | am so very very happy all the time*,
"very happy")
incorrectly returns false
wrong approach:
» try to trace the execution of contains() for this test case
right approach:
> first try to reduce the size of the test case

> even better: bracket the bug with a test case that fails and similar test cases

that succeed
© Robert Miller 2008

J**
* Returns true if and only if s contains t as a substring,
* e.g. contains('hello world”, "world"™) == true.

*/
public static boolean contains(String s, String t) {
search:
for (int i = 0; i < s.length(Q); ++i) {
for (int j = 0; j < t.lengthQ); ++j, ++i) {
if (s.charAt(i) != t.charAt(j)) continue search;
}
return true;
}
return false;
b

© Robert Miller 2008

10/15/2008

exploit modularity
» start with everything, take away pieces until bug goes
» start with nothing, add pieces back in until bug appears
take advantage of modular reasoning
» trace through program, viewing intermediate results
» insert assertions targeted at the bug
» design all data structures to be printable (i.e.,implement toString())
» println is a surprisingly useful and universal tool
* in large systems, use a logging infrastructure instead of printin
use binary search to speed things up
» bug happens somewhere between first and last statement
» so do binary search on the ordered set of statements

© Robert Miller 2008

suppose a Sudoku solver produces the wrong answer

Sudoku
solver

parse make SAT SAT interpret print
> > —>1 >l

input formula solver assignment output

Note that this isn’t a state machine diagram or a module dependence diagram; it
shows data flow, which is often useful for thinking about bugs.

© Robert Miller 2008

whenever you find and fix a bug

» store the input that elicited the bug

» store the correct output

> add it to your test suite

why regression tests help

» helps to populate test suite with good test cases

* remember that a test is good if it elicits a bug — and every regression
test did in one version of your code

» protects against reversions that reintroduce bug

» the bug may be an easy error to make (since it happened once already)
test-first debugging

» when a bug arises, immediately write a test case for it that elicits it

» once you find and fix the bug, the test case will pass, and you’ll be done

© Robert Miller 2008

we’ve had it easy so far

» sequential, deterministic programs have repeatable bugs
but the real world is not that nice...

» timing dependencies

» unpredictable network delays

» varying processor loads

» concurrency

heisenbugs

» nondeterministic, hard to reproduce

» may even disappear when you try to look at it with println or debugger!
one approach

» build a lightweight event log (circular buffer)

» log events during execution of program as it runs at speed
» when you detect the error, stop program and examine logs

© Robert Miller 2008

10/15/2008

public class Bank {
int balance;

public Bank(int balance) {
this.balance = balance;

}

public void deposit(int amount) {
balance += amount;

¥

public void withdraw(int amount) {
balance -= amount;

}

public int getBalance() {
return balance;

¥

© Robert Miller 2008

// our bank account starts with $100
final Bank account = new Bank(100);
// start a bunch of threads
List<Thread> threads = new ArrayList<Thread>();
for (int i = 0; i < 10; ++i) {
Thread t = new Thread(new Runnable() {
public void runQ) {
// each thread does a bunch of bank transactions
for (int i = 0; i < 10000; ++i) {
account.deposit(l); // put a dollar in
account.withdraw(l); // take it back out
3;
t.start(); // don"t forget to start the thread!
threads.add(t); }
// wait for all the threads to finish
for (Thread t: threads) t.join(Q);
// display the final account balance
System.out.printin(account.getBalance());

© Robert Miller 2008

avoid debugging

» it’s not fun and not productive

» many of the techniques of this class are designed to save you from bugs
approach it systematically

» simplify test cases

» find cause before trying to fix

© Robert Miller 2008

