
MIT OpenCourseWare
http://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

6.005
elements ofsoftwareconstruction

designing a SAT solver, part 3

Daniel Jackson

plan for today

topics
� datatypes and structure
� the idea of data abstraction
� types and operations for DPLL
� example abstract types & design challenges
� designing an equals operation

patterns
� Factory Method (in Literal)

2© Daniel Jackson 2008

a datatype revisited

�

using sets
recall computing set of vars appearing in a formula
� declare function

vars: F -> Set<Var>
� declare datatype

F = Var(name:String) + Or(left:F,right:F) + And(left:F,right:F) + Not(formula:F)
� define function over variants

vars (Var(n)) = {Var(n)}

vars (Or(fl, fr)) = vars(fl) 㱮 vars(fr)

vars (And(fl, fr)) = vars(fl) 㱮 vars(fr)

vars (Not(f)) = vars(f)

where do sets come from?
� defined structurally like this

Set<T> = List<T>

but should be defined by operations instead: {}, 㱮
4© Daniel Jackson 2008

a set interface

public interface Set<E> {

� public Set<E> add (E e);
� public Set<E> remove (E e);

� public Set<E> addAll (Set<E> s);
� public boolean contains (E e);

� public E choose ();
� public boolean isEmpty ();

� public int size ();
}

© Daniel Jackson 2008 5

� }

�

� � }

� }

a set implementation

� public class ListSet<E> implements Set<E> {

� private List<E> elements;

� public ListSet () {elements = new EmptyList<E> ();}

� public Set<E> add (E e) {
� � if (elements.contains (e)) return this;

� � return new ListSet<E> (elements.add (e));

� public Set<E> remove (E e) {

� � � if (isEmpty()) return this;
� � � E first = elements.first();

� � � ListSet<E> rest = new ListSet<E> (elements.rest());
� � � if (first.equals(e))

� � � � return rest;
� � � else

� � � � return rest.remove(e).add(first);

� public boolean contains (E e) {

� � return elements.contains(e);

...}

6© Daniel Jackson 2008

a new viewpoint

datatype productions
� datatypes defined by their structure or representation

abstract datatypes
� datatypes defined by their operations or behavior

extending the type repertoire
� used to thinking of basic types behaviourally:

integers: +, *, <, =

array: get(a,i), store(a,i,e)

� abstract datatypes: user-defined types

string: concat(s,t), charAt(s,i)

set: {}, 㱮, 㱨

7© Daniel Jackson 2008

what makes an abstract type?

defined by operations
� an integer is something you can add, multiply, etc
� a set is something you can test membership in, union, etc

representation is hidden or “encapsulated”
� client can’t see how the type is represented in memory
� is integer twos-complement? big or little endian?
� is set a list? a binary tree? an array?

language support for data abstraction
� packaging operations with representations
� hiding representation from clients

8© Daniel Jackson 2008

encapsulation

two reasons for encapsulation of representations

rep independence
� if client can’t see choice of rep, implementor can change it
� eg: integers: your program can run on a different platform
� eg: sets: programmer can switch rep from list to array

rep invariants
� not all values of the rep make legal abstract values
� prevent client from accessing rep so code of ADT can preserve invariants
� eg: sets: make sure element does not appear twice

9© Daniel Jackson 2008

classic types

domain specific and generic types
� some types are specific to a domain (clause, literal)
� some have wide application (list, set)
� widely applicable types are usually polymorphic
� these are the “classic ADTs”

in Java
� found in the standard package java.util
� often called “Java collection framework”

10© Daniel Jackson 2008

a zoo of types

type overview producers observers common reps

list
sequence for concatenation

and front-append
add, append first, rest, ith array, linked list

queue FIFO: first in, first out enq, deq first
array, list, circular

buffer

stack LIFO: last in, first out push, pop top array, list

map associates keys and values put get
association list,
hash table, tree

set unordered collection
insert,
remove

contains
map, list, array,
bitvector, tree

bag
like set, but element can
appear more than once

insert,
remove

count
map, array,

association list

note
� producers and observers: just examples
� common reps: some (eg, hash table, bitvector) just for mutable versions

11© Daniel Jackson 2008

the DPLL algorithm

what types do you need?

a square root procedure needs
� floating point numbers

a SAT solver needs
� booleans, literals, clauses, environments

characteristic of complex programs
� computations defined over set of datatypes
� most of the datatypes are not built-in, but user-defined
� so design datatypes before other program components

let’s examine the DPLL algorithm
� and see what types it needs

13© Daniel Jackson 2008

�

�

basic backtracking algorithm
clausal form
� recall that algorithm acts on formula represented as clause-set
� product of sums: need every clause true, some literal in each clause

elements of the algorithm
� backtracking search: pick a literal, try false then true
� if clause set is empty, success
� if clause set contains empty clause, failure

example

want to prove Socrates㱺Mortal from Socrates㱺Human 㱸 Human㱺Mortal
so give solver: Socrates㱺Human 㱸 Human㱺Mortal 㱸 ¬ (Socrates㱺Mortal)

� in clausal form: {{¬Socrates,Human},{¬Human,Mortal},{Socrates},{¬Mortal}}
� in shorthand: {SH}{HM}{S}{M}

14© Daniel Jackson 2008

backtracking execution

{SH}{HM}{S}{M}

set Hset H

{M}{S}{M} {S}{S}{M}

set Mset M set Mset M

{S}{} {}{S} {S}{S}{} {S}{S}

set Sset S

{} {}

� stop when node contains {} (failure) or is empty (success)
� in this case, all paths fail, so theorem is valid
� in worst case, number of leaves is 2^#literals

15© Daniel Jackson 2008

DPLL

classic SAT algorithm
� Davis-Putnam-Logemann-Loveland, 1962

unit propagation
� on top of backtracking search
� if a clause contains one literal, set that literal to true

example (on right)
� in this case, no splitting needed
� propagate S, then H, then M

performance
� often much better, but worst case still exponential

{SH}{HM}{S}{M}

unit S

{H}{HM}{M}

unit H

{M}{M}

unit M

{}

16© Daniel Jackson 2008

an implementation

public static Environment solve(List<Clause> clauses) {

return solve (clauses, new Environment());}

private static Environment solve(List<Clause> clauses, Environment env) {

if (clauses.isEmpty()) return env; // if no clauses, trivially solvable

Clause min = null;

for (Clause c : clauses) {

if (c.isEmpty()) return null; // if empty clause found, then unsat

if (min == null || c.size() < min.size()) min = c;

}

Literal l = min.chooseLiteral();

bool.Variable v = l.getVariable();

if (min.isUnit()) { // a unit clause was found, so propagate

env = env.put(v, l instanceof PosLiteral ? Bool.TRUE : Bool.FALSE);

return solve(reduceClauses (clauses,l), env);

} // else split

if (l instanceof NegLiteral) l = l.getNegation();

Environment solvePos = solve (reduceClauses (clauses,l), env.put(v, Bool.TRUE));

if (solvePos == null)

return solve (reduceClauses (clauses,l.getNegation()), env.put(v, Bool.FALSE));

else return solvePos;

 }

private static List<Clause> reduceClauses(List<Clause> clauses, Literal l) {

List<Clause> reducedClauses = new EmptyList<Clause>();

for (Clause c : clauses) {

Clause r = c.reduce(l);

if (r != null)

reducedClauses = reducedClauses.add(r);

}

return reducedClauses;

 }
17© Daniel Jackson 2008

basic types for SAT

types and operations

public static Environment solve(List<Clause> clauses) {

return solve (clauses, new Environment());}

private static Environment solve(List<Clause> clauses, Environment env) {

if (clauses.isEmpty()) return env; // if no clauses, trivially solvable

Clause min = null;

for (Clause c : clauses) {

if (c.isEmpty()) return null; // if empty clause found, then unsat

if (min == null || c.size() < min.size()) min = c;

}

Literal l = min.chooseLiteral();

bool.Variable v = l.getVariable();

if (min.isUnit()) { // a unit clause was found, so propagate

 env = env.put(v, l instanceof PosLiteral ? Bool.TRUE : Bool.FALSE);

return solve(reduceClauses (clauses,l), env);

} // else split

if (l instanceof NegLiteral) l = l.getNegation();

Environment solvePos = solve (reduceClauses (clauses,l), env.put(v, Bool.TRUE));

if (solvePos == null)

return solve (reduceClauses (clauses,l.getNegation()), env.put(v, Bool.FALSE));

else return solvePos;

 }

private static List<Clause> reduceClauses(List<Clause> clauses, Literal l) {

List<Clause> reducedClauses = new EmptyList<Clause>();

for (Clause c : clauses) {

Clause r = c.reduce(l);

if (r != null)

reducedClauses = reducedClauses.add(r);

}

return reducedClauses;

 }
19© Daniel Jackson 2008

� }

� }

� }

bool type

introduced my own boolean ADT
� has three boolean values: TRUE, FALSE and UNDEFINED
� why did I do this?

public enum Bool {

� TRUE, FALSE, UNDEFINED;�

� public Bool and (Bool b) {

� � if (this==FALSE || b==FALSE) return FALSE;

� � if (this==TRUE && b==TRUE) return TRUE;

� � return UNDEFINED;

� public Bool or (Bool b) {

� � if (this==FALSE && b==FALSE) return FALSE;

� � if (this==TRUE || b==TRUE) return TRUE;

� � return UNDEFINED;

� public Bool not () {

� � if (this==FALSE) return TRUE;

� � if (this==TRUE) return FALSE;

� � return UNDEFINED;

}

20© Daniel Jackson 2008

� ...

environment type

should Environment be an ADT at all?
� just a mapping from literals to booleans
� decided yes, in case I wanted to add functionality later
� sure enough, I did: return Bool.UNDEFINED if no mapping

public class Environment {

private Map <Variable, Bool> bindings;

public Environment put(Variable v, Bool b) {

� � 	 return new Environment (bindings.put (v, b));

 }

public Bool get(Variable v){

 Bool b = bindings.get(v);

if (b==null) return Bool.UNDEFINED;

else return b;

 }

}

21© Daniel Jackson 2008

clause type
what’s a clause?
� clause is disjunction of set of literals; empty means FALSE, no rep of TRUE

public class Clause {

public Clause() {...}

public Clause(Literal literal) {...}

public Clause add(Literal l) {...}

public Clause reduce(Literal literal) {...}

public Literal chooseLiteral() {...}

public boolean isUnit() {...}

public boolean isEmpty() {...}

public int size() {...}

 }

notes
� order not exposed in observers: chooseLiteral is non-deterministic
� isUnit, isEmpty are for convenience of clients, not strictly necessary
� add, reduce are the key ‘producers’:

add (l): return clause obtained by adding l as a disjunct

reduce (l): return clause obtained by setting l to TRUE

22© Daniel Jackson 2008

designing operations
issue
� what should add, reduce return when result is TRUE? eg, add S to {S}

design options
� create clause for special value TRUE
� throw an exception
� return null

considerations
� clause set should not contain vacuous TRUE clauses
� exceptions are awkward; in Java, best used only when not expected
� compiler doesn’t ensure that null return value is checked

23© Daniel Jackson 2008

representation independence

� ...

� ...

� }

choice of rep

an abstract type can be implemented with different reps

� example: two versions of Environment

public class Environment {

private Map <Variable, Bool> bindings;

public Bool get(Variable v){

Bool b = bindings.get(v);

if (b==null) return Bool.UNDEFINED;

else return b;

 }

}

public class Environment {

� private Set <Variable> trues, falses;

� public Bool get(Variable v){
� � if (trues.contains (v)) return Bool.TRUE;

� � if (falses.contains (v)) return Bool.FALSE;
� � return Bool.UNDEFINED;

}

25© Daniel Jackson 2008

achieving rep independence

rep independence
� want to be able to change rep without changing client

what does this require?
� if client can access fields directly

rep is fully “exposed”: heavy modification of client code required
� if client calls methods that return fields directly

can fix by modifying ADT methods, but will be ugly
� if client can’t access fields even indirectly (as in previous slide)

ADT is easily modified locally

so independence is achieved by
� combination of language support and programmer discipline

26© Daniel Jackson 2008

designing equality

comparing literals

need to compare literals
�	 eg, in Clause.reduce

eg, when S is true: {SH} reduces to {H}, and {SH} reduces to TRUE
�	 a SAT solver will do this a lot, so must be efficient

equality of immutable types
�	 calling constructor twice on same args gives distinct objects

Literal a = new Literal (“S”);
Literal b = new Literal (“S”);
System.out.println (a==b ? “same” : “not”); // prints not

two strategies
�	 use equals method, and code it to compare object values

for literals, compare names char-by-char every time!

�	 intern the objects so there’s at most one object with a given value
28© Daniel Jackson 2008

interning with a factory method

factory method pattern
� instead of constructor, client calls a static ‘factory’ method

public static T make () { return new T(); }
� factory method can call constructor, but can also recycle objects
public abstract class Literal {

protected Literal negation;

protected Variable var;

public Literal (Variable name) {this.var = new bool.Variable(name);}

}
public class Pos extends Literal {

protected static Map<String,Pos> alloc = new ListMap<String,Pos>();
private Pos (String name) {super(name);}

public static Pos make (String name) {

Pos l = alloc.get(name);

if (l==null) {

l = new Pos(name);

 Neg n = new Neg(name);

l.negation = n; n.negation = l;

alloc = alloc.put(name, l);

}

return l;

 }
 29© Daniel Jackson 2008

putting it all together: demo

� � � � }

� }

�

allocating variables

Sudoku abstract type contains
� 2D array of known values (square)
� 3D array of boolean variables (occupies)
public class Sudoku {

� private final int dim;

� private final int size;

� private int [][] square;

� private Formula [][][] occupies;

� public Sudoku (int dim) {

� � this.dim = dim;

� � size = dim * dim;

� � square = new int [size][size];

� � occupies = new Formula [size][size][size];

� � for (int i = 0; i < size; i++)

� � � for (int j = 0; j < size; j++)

� � � � for (int k = 0; k < size; k++) {

� � � � � Formula l = Formula.makeVariable ("occupies(" + i + ","+ j + ","+ k + ")");

� � � � � occupies[i][j][k] = l;

� public static Sudoku fromFile (String filename, int dim) {...}

31© Daniel Jackson 2008

� � � � }

� � � }

� � ...

� }

creating formula

to create formula
� create at-most and at-least formulas per row, column, block
� my solver converts to CNF

� public Formula getFormula () {

� � Formula formula = Formula.TRUE;

� � // each symbol appears exactly once in each row

� � for (int k = 0; k < size; k++)

� � � for (int i = 0; i < size; i++) {

� � � � Formula atMost = Formula.TRUE;

� � � � Formula atLeast = Formula.FALSE;

� � � � for (int j = 0; j < size; j++) {

� � � � � atLeast = atLeast.or (occupies[i][j][k]);

� � � � � for (int j2 = 0; j2 < size; j2++)

� � � � � � if (j != j2)

� � � � � � � atMost = atMost.and (occupies[i][j][k].implies(

� � � � � � � � � � � � occupies[i][j2][k].not()));

� � � � formula = formula.and (atMost).and (atLeast);

� � return formula;

32© Daniel Jackson 2008

� � � � }

� � }

� }

interpreting the solution

to interpret solution
� just iterate over puzzle, and look up each variable in environment

� public String interpretSolution (Environment e) {

� � String result = "";

� � for (int i = 0; i < size; i++) {

� � � String row = "|";

� � � for (int j = 0; j < size; j++)

� � � � for (int k = 0; k < size; k++) {

� � � � � Formula l = occupies[i][j][k];

� � � � � if (l.eval(e) == Bool.TRUE)

� � � � � � row = row + (k+1) + "|";

� � � result = result + row + "\n";

� � return result;

33© Daniel Jackson 2008

� }

�

executing the solver

steps
� create Sudoku object from file
� extract formula, solve and interpret

� public static void solveStandardPuzzle (String filename) throws IOException {
� � long started = System.nanoTime();

� � System.out.println ("Parsing...");
� � Sudoku s = Sudoku.fromFile (filename, 3);

� � System.out.println ("Creating SAT formula...");
� � Formula f = s.getFormula();

� � System.out.println ("Solving...");
� � Environment e = f.solve();

� � System.out.println ("Interpreting solution...");
� � String solution = s.interpretSolution(e);

� � System.out.println ("Solution is: \n" + solution);
� � long time = System.nanoTime();

� � long timeTaken = (time - started);
� � System.out.println ("Time:" + timeTaken/1000000 + "ms");

34© Daniel Jackson 2008

sample run

solving a sample Sudoku puzzle
� 1,000 variables and 24,000 clauses
� about 10 seconds (on 2.4GHz Intel Mac with 2GB memory)

Parsing...

Creating SAT formula...

Solving...

Interpreting solution...

Solution is:

|9|1|6|8|4|3|5|2|7|

|8|4|2|7|5|6|9|3|1|

|7|5|3|2|9|1|8|6|4|

|3|6|4|9|2|7|1|8|5|

|2|8|1|5|6|4|7|9|3|

|5|9|7|1|3|8|2|4|6|

|6|7|8|4|1|9|3|5|2|

|4|2|9|3|7|5|6|1|8|

|1|3|5|6|8|2|4|7|9|

Time:9211ms

35© Daniel Jackson 2008

features of modern SAT solvers

modern SAT solvers

some great open-source SAT solvers
� Sat4J (all Java)

© Daniel Jackson 2008

modern SAT solvers
some great open-source SAT solvers
‣ Sat4J (all Java) http://www.sat4j.org/

‣ Chaff http://www.princeton.edu/~chaff

‣ Berkmin http://eigold.tripod.com/BerkMin.html

‣ MiniSat http://minisat.se/

what do they do beyond what I’ve explained?
‣ learning: if literal choices ABC ended in failure, add {ABC}
‣ splitting heuristics: pick the literal to split on carefully
‣ randomization: restart with new literal order
‣ clever representation invariants (explained later in course)

a less conventional SAT solver
‣ “In Classic Math Riddle, DNA Gives a Satisfying Answer”, George Johnson,
New York Times, March 19, 2002

37

summary

summary

principles
� define an abstract type by its operations
� hide the representation from clients

patterns
� Factory Method

39© Daniel Jackson 2008

