MIT OpenCourseWare
http://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

rep invariants, equality, visitors

Daniel Jackson

recall strategy for avoiding bugs
* make them impossible
* don't insert them

* make them easy to find

topics
* advice on implementing types
* equality and how to code it

* rep invariants & how to exploit them

patterns

* [terator and Visitor

© Daniel Jackson 2008

advice on implementing types

desiderata
* easy to program (and get right!)
* good enough performance

usually
* a couple of fields of existing types suffices

* 50 before inventing a complex type, check Java collections and your own

sometimes
* a tricky structure or algorithm is needed

* first, see if someone's done it before (eg, look it up in CLR book)

always

* write a rep invariant to clarify the design

© Daniel Jackson 2008 4

more on hashCode
required methods first in part 3 of course

* from Object class: equals, hashCode, to String
* from any interface the class implements

* when overriding, mark with @Override

constructors

* for an immutable type, some private constructors often help

producers (return new values of type) and observers (return other types)
* whenever possible, build on each other

* separate core methods (eg, size) from those that sit on top (eg. isEmpty)

incomplete methods

* use UnsupportedOperationException to get it to compile

© Daniel Jackson 2008 5

step 3: rep invariant

code the rep invariant
* as a checkRep method

* for immutables, call it at the end of all constructors

as you write the operations

* ask yourself why they preserve the rep invariant

© Daniel Jackson 2008

step 4: assertions and tests

runtime assertions
* are your friend: use them freely
* turn on by adding -ea to VM args in Eclipse

write JUnit test suite for your class
* will help you find bugs earlier, and make debugging easier
* take the trouble to write a toString that produces helpful output

© Daniel Jackson 2008

equality: basics

objects often used as keys
* need to compare them

* eg, Literal used as key in Environment

Java convention

* the class Object has a method that every class inherits
Object.equals: Object -> boolean

* by convention, this method is used to compare objects for equality
* collections especially assume this: call equals on keys
* the inherited method is usually wrong for immutable types

* so must override by explicitly declaring a method
MyType.equals: Object -> boolean

© Daniel Jackson 2008

why inherited equality fails

the problem
* Object.equals compares objects with ==
* this makes any two distinct objects unequal

* even if they have the same value

example

* the “same" pairs are unequal:

public class Pair {
private int fst, snd;
public Pair (int f, int s) {fst=f; snd=s;}

public static void main (String[] args) {
Pair pl = new Pair (1, 2);
Pair p2 = new Pair (1, 2);
System.out.println (pl == p2 ? "yes" : "no");
System.out.println (pl.equals(p2) ? "yes" : "no");

}

© Daniel Jackson 2008

standard equals method

correct code for Pair.equals
* compare the fields

@0verride
public boolean equals (Object that) {
1f (this == that) return true;
1f (!(that instanceof Pair)) return false;
Pair p = (Pair) that;
return p.fst == fst & p.snd == snd;
hy

remember: comparison is with any object reference
* need to check type of arg, and whether null

* you may be tempted to write this, but don't: it will just overload equals
public boolean equals (Pair that) {...}

* write @Override and compiler will catch the bug

© Daniel Jackson 2008

a design puzzle

interning objects
* suppose you have a structure containing objects of type C
* you want to intern them: that is, have one object for each value

* s0 you write this code, but it won't work (why not?)

public class C {
private String s;
public static Map<(C,C> allocated = new ListMap<(C,C>(Q);

public C intern (O {
C ¢ = allocated.get(this);
1f (¢ == null) {
allocated = allocated.put(this, this);
return this;

}

return c;

© Daniel Jackson 2008

the problem: one equals method
* if it compares references with ==, then lookup won't find match

it it compares values, then interning is pointless!

have collection take equality predicate as argument
* can't use standard Java collections: will have to make your own

* but see use of comparator objects in ordered types like java.util.TreeSet

use component as key instead of whole object
' eg, allocated maps String to C

* this is how the factory method of PosLiteral works (previous lecture)

for key, make wrapper around C object with its own equals
* not terrible, but a bit ugly

© Daniel Jackson 2008 13

rep invariants

IntList » IntSet

[1,1,2]

[] - {}
[1] \ \ / > {1}
Ié,ﬂ) / \ {1,2}

rep invariant R
* defines set of legal representation values

* documented and implemented as checkRep

abstraction function A
 interprets legal representation values as abstract values

* documented and implemented as toString

© Daniel Jackson 2008 15

for state machines
* establish invariant in initial state

* ensure that all transitions preserve invariant

for mutable types, the same approach
* a mutable object is a state machine

for immutable types, a similar story
* objects can’t change
* assume any argument you're given satisfies the invariant

* ensure any result you create satisfies it too

who gets to preserve the invariant?
* by hiding the rep, can limit to the methods of the ADT itself

© Daniel Jackson 2008 16

a strong invariant means
* methods can assume more about arguments
* allows checks to be omitted and optimizations to be applied

* but methods must do more to ensure results satisfy invariant

rep design = rep invariant

* the choice of rep invariant characterizes the design of the rep!

© Daniel Jackson 2008

these invariants
* are commonly used

* provide concrete benefits

examples

* no nulls: no need to check before calling method

* acyclic: no need to worry about looping

* ordered: can navigate efficiently; can stop when key value is passed
* no duplicates: can stop when find first match

* caching: can do fast look up

© Daniel Jackson 2008

example: invariant for Clause

writing the invariant

rep invariant for Clause written as executable method

public class Clause {

private final List<Literal> literals;
static final boolean CHECKREP = true;
void checkRep () {checkRep (literals);}

void checkRep (List<Literal> 1s) {

assert 1ls != null : "Clause, invariant: literals non-null";
1f (!Ms.isEmpty()) {

Literal first = 1ls.first(); List<Literal> rest = ls.rest();
assert first != null : "Clause, invariant: no null elements";

assert !rest.contains(first) : "Clause, invariant: no duplicates";

assert !rest.contains(first.getNegation()) : "Clause, invariant: no literal
and its negation";

checkRep (rest); messages give
} invariant informally

flag to turn
expensive check off

}

private Clause(List<Literal> literals) {
this.literals = literals;

if (CHECKREP) checkRep();

o check rep for each
} constructed value

what's the computational cost of checkkep?

© Daniel Jackson 2008 20

exploiting the invariant

an equals method for Clause

@Override
public boolean equals (Object that) {
1f (this == that) return true;
1f (!(that instanceof Clause)) return false;

Clause ¢ = (Clause) that;
1f (size() '= c.size()) return false;

for (Literal 1: literals)
1f (!(c.contains(l))) return false;

return true;

}

how invariant is exploited

* since literals is non-null, can use in for-loop without null check
implicit call to literals.iterator will throw exception if literals is null

* since no duplicate literals, can check containment in one direction only
thatis, giventwosetsSandT. S=T & #S=H#TASCT

© Daniel Jackson 2008 2]

preserving the invariant

no free lunch
* you have to do some work to establish the invariant

example: Clause.add

/**
* Add a literal to this clause; if already contains the literal's negation, return null
* Requires: 1 is non-null
* @return the new clause with the literal added, or null
*/
public Clause add(Literal 1) {
1f (literals.contains(l)) return this;
1f (literals.contains(l.getNegation())) return null;
return new Clause(literals.add(l));

¥
* what impact does each part of the invariant have?

© Daniel Jackson 2008 22

exploiting the invariant

exercise: how does reduce exploit the invariant?

/**
* Requires: literal is non-null
* clause obtained by setting literal to true
* or null if the entire clause becomes true
*/
public Clause reduce(Literal literal) {
List<Literal> reducedLiterals = reduce(literals, literal);
1f (reducedlLiterals == null) return null;
else return new Clause(reducedLiterals);
¥
private static List<Literal> reduce(List<Literal> literals, Literal 1) {
1f (literals.isEmpty()) return literals;
Literal first = literals.first();
List<Literal> rest = literals.rest();
1f (first.equals(l)) return null;
else 1f (first.equals(l.getNegation())) return rest;
else {
List<Literal> restR = reduce(rest, 1);
1f (restR == null) return null;
return restR.add(first);

© Daniel Jackson 2008 23

iterator pattern

iteration in Java

recall how our solver found a minimal clause

* iterate over clauses

Clause min = null;

for (Clause c : clauses) {
1f (c.1isEmpty()) return null;

1f (min == null |l c.size() < min.size()) min = c;
}

how does this work?

* hidden iterator at play

© Daniel Jackson 2008 25

the iterator pattern

a Java shorthand list iterator

, public class ListIterator<E> implements Iterator<E>
the statement List<E> remaining;

for (Ee: c) {...} public L'i.S'l.ZItEiClt(')r' gList<E> list) {
remaining = list;

* is short for }
public boolean hasNext () {
Iterator 1= c.iterator(); return !remaining.isEmpty();
. . 1
while (1.h.asNext()){ blic E next O {
Ee:LneXt(); E first = remaining.first);
remaining = remaining.rest();
} return first;
}
¥
iterator interface iterator method

public interface Iterator<E> { public abstract class List<E> implements Iterable<E>
boolean hasNext () public Iterator<E> iterator () {
E next O; , return new ListIterator<E>(this);

void remove (); ¥

© Daniel Jackson 2008 26

iterator state machine

hasNext(true)

NONEMPTY

getNext

Ea

N

hasNext
(false)

why a stateful object in a side-effect free program?
* the only convenient way to do iteration in Java

* so long as iterator used only in for loop as shown, no mutability issues arise

© Daniel Jackson 2008 27

visitor pattern

Interpreter pattern: look what we're doing
* declare function over datatype

size: List<T>->int where List<T> =Empty + Cons (first: T, rest: List<T>)
* break function into cases, one per variant

size (Empty) =0
size (Cons(first:e, rest: 1)) =1 + size(l)

* but then split cases across classes! can't we keep them together?

 in functional language can do exactly this: (in ML, eg)
fun size Empty=0

| Cons(e, l) =1+ size(l)
solution: localize function definition in “visitor”
* hard to grasp first time, but easy once you know the pattern
* a useful and common idiom, esp. for compilers

* good check of your understanding of dynamic dispatch & overloading

© Daniel Jackson 2008 29

basic visitor structure

* visitor

public interface ListIntVisitor<E> {
int onEmpty (Empty<E> 1);
int onCons (Cons<E> 1);

}

public class SizeVisitor<E> implements ListIntVisitor<E>{

public int onEmpty(Empty<E> 1) {return 0;}
public int onCons(Cons<E> 1) {return 1 + l.rest().accept(this);}

}
* datatype and variants

public abstract class List<E> {
public abstract int accept(ListIntVisitor<E> visitor);

}
public class Empty<E> extends List<E> {

public int accept(ListIntVisitor visitor) {return visitor.onEmpty(this);}
}

public class Cons<E> extends List<E> {
public int accept(ListIntVisitor<E> visitor) {return visitor.onCons(this);}

Iy
* usage

int size = mylList.accept(new SizeVisitor<E>());

© Daniel Jackson 2008 30

the visitor carousel

1:l.accept(v)

, 2:v.onCons(l)

l /1 3:l.rest().accept(v) +1
¥ 4:v.onEmpty(e)

2
-------------- sy o

3, 5
first rest o
Y \ ;::’/ 4

note how
* control passes back and forth between visitor and datatype objects
* function is computed at visitor (steps 3 and 5)

© Daniel Jackson 2008 31

going polymorphic

accept methods only work for visitor that returns integer

public interface ListIntVisitor<E> {
int onEmpty (Empty<E> 1);
int onCons (Cons<E> 1);

}

so make the visitor polymorphic

* new interface

public interface ListVisitor<E,T> {
T onEmpty (Empty<E> 1);
T onCons (Cons<E> 1);

}

* new accept methods
public <T> T accept(ListVisitor<E,T> visitor) {return visitor.onEmptylList(this);}

* new Vvisitor

public class SizeVisitor<E> implements ListVisitor<E,Integer>{

public Integer onEmpty(Empty<E> 1) {return 0;}
public Integer onCons(Cons<E> 1) {return 1 + 1l.rest().accept(this);}

}

© Daniel Jackson 2008 32

final refinement

accept method is almost boilerplate

public class Cons<E> extends List<E> {
public int accept(ListIntVisitor<E> visitor) {return visitor.onCons(this);}

}

can make identical by exploiting overloading

* new interface

public interface ListVisitor<E,T> {
T visit (Empty<E> 1);
T visit (Cons<E> 1);

h
* new accept method: same in all variants

public <T> T accept(ListVisitor<E,T> visitor) {return visitor.visit(this);}

* new Vvisitor

public class SizeVisitor<E> implements ListVisitor<E,Integer>{
public Integer visit (Empty<E> 1) {return 0;}

public Integer visit (Cons<E> 1) {return 1 + 1.rest().accept(this);}

© Daniel Jackson 2008 33

summary

use rep invariants to prevent bugs
* and to make them easier to find
* design of type = rep invariant

equality is tricky
* for immutables, compare contents not object refs

* (not covered in lecture) if you override equals, must override hashCode too

visitor pattern
* some boilerplate code in datatypes

» allows one function/class

© Daniel Jackson 2008 35

