
MIT OpenCourseWare
http://ocw.mit.edu 

6.005 Elements of Software Construction 
Fall 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu/terms
http://ocw.mit.edu


6.005elements ofsoftwareconstruction 
basics of mutable types
 
Daniel Jackson 



heap semantics of Java
 



pop quiz
 
what happens when this code is executed? 


 
 String s = "hello";
 

 
 s.concat("world");
 


 
 System.out.println (s);
 

 
 s = s.concat(" world");
 


 
 System.out.println (s);
 

and how about this? 

 
 StringBuffer sb = new StringBuffer ("hello");
 


 
 sb.append(" world");
 

 
 System.out.println (sb);
 


 
 StringBuffer sb2 = sb;
 

 
 sb2.append ("!");
 


 
 System.out.println (sb);
 

© Daniel Jackson 2008 3 



solutions
 
what you needed to know to answer correctly 

immutable and mutable types 
‣ String is immutable, StringBu!er is mutable 
‣ method call on immutable object can’t affect it 

assignment semantics 
‣ the statement x = e makes x point to the object that e evaluates to 

aliasing 
‣ the statement x = y makes x point to the same object as y 
‣ subsequent mutations of the object are seen equivalently through x and y 
‣ since immutable objects can’t be mutated, sharing is not observable 

© Daniel Jackson 2008 4 



how mutation happens
 
through field setting 
‣ statement x.f = y makes f field of x point to object y 

through array update 
‣ statement a[i] = y makes element_i ‘field’ of a point to object y 

5

f

x

y

f

© Daniel Jackson 2008 



null and primitives
 
primitive values 
‣ eg, integers, booleans, chars 
‣ are immutable (and aren’t objects) 
‣ so whether shared is not observable 

null 
‣ is a value of object type 
‣ but does not denote an object 
‣ cannot call method on null, or get/set field 

© Daniel Jackson 2008 6 



the operator ==
 
the operator == 
‣	 returns true when its arguments denote the same object 
(or both evaluate to null) 

for mutable objects 
‣	 if x == y is false, objects x and y are observably different 
‣	 mutation through x is not visible through y 

for immutable objects 
‣	 if x == y is false, objects x and y might not be observably different 
‣	 in that case, can replace x by y and save space (called ‘interning’) 
‣	 Java does this with Strings, with unpredictable results 
‣	 lesson: don’t use == on immutables (unless you’re doing your own interning) 

© Daniel Jackson 2008	 7 



heap reachability
 

from example before 
‣ after these statements 


 
 String s = "hello";
 

 
 s = s.concat(" world");
 

‣ the two string literal objects are unreachable
 

once an object is unreachable 
‣ it cannot be reached again 
‣ so removing it will not be observable 

an assignment or field set can leave an object unreachable 

"hello world"

"hello" "world"s

AFTER

"hello"

s

"world"

arg

BEFORE

garbage collector (aka “automatic memory management”)
 
‣ marks unreachable objects, then deallocates them 

© Daniel Jackson 2008 8 



conceptual leaks
 
storage leak 
‣ use of memory grows, but active state isn’t growing 

no storage leaks in garbage-collected language? 
‣ unfortunately, can still happen 

exercise: what’s wrong with this code? (hint: think about rep invariant) 

 public class ArraySet {
 


 
 
 private Object [] elements;
 


 
 
 private int size;
 

 
 
 ...
 


 
 
 public void delete (Object o) {
 

 
 
 
 for (int i = 0; i < size; i++) {
 


 
 
 
 
 if (elements[i].equals(o)) {
 

 
 
 
 
 
 elements[i] = elements[size-1];
 


 
 
 
 
 
 size--;
 

 
 
 
 
 }
 


 
 
 
 }
 

 
 
 }
 


 © Daniel Jackson 2008 9 



mutable datatypes
 



mutable vs. immutable
 
String is an immutable datatype 
‣ computation creates new objects with producers 

class String {
 
String concat (String s);
 
...}
 

StringBuffer is a mutable datatype 
‣ computation gives new values to existing objects with mutators 

class StringBu!er {
 
void append (String s);
 
...}
 

© Daniel Jackson 2008 11 



classic mutable types
 

interface in principal 
java.util implementations 

key mutators 

List ArrayList, 
LinkedList add, set 

Set HashSet, 
TreeSet 

add, remove, 
addAll, removeAll 

Map HashMap, 
TreeMap put 

© Daniel Jackson 2008 12 



how to pick a rep
 
lists 
‣ use ArrayList unless you want insertions in the middle 

sets and maps 
‣ hashing implementations: constant time 
‣ tree implementations: logarithmic time 
‣ use hashing implementations unless you want determinism 
‣ we’ll see later in this lecture how non-determinism arises 

concurrency 
‣ none of these are thread-safe 
‣ if using with concurrent clients, must synchronize clients yourself 
‣ if you want concurrency in operations, use java.util.concurrent versions 

© Daniel Jackson 2008 13 



equality revisited
 



the object contract
 
every class implicitly extends Object 
‣ two fundamental methods: 

class Object { 
boolean equals (Object o) {...} 
int hashCode () {...} 
... 
} 

“Object contract”: a spec for equals and hashCode 
‣ equals is an equivalence (reflexive, symmetric, transitive) 
‣ equals is consistent: if x.equals(y) now, x.equals(y) later 
‣	 hashCode respects equality: 

x.equals(y) implies x.hashCode() = y.hashCode() 

© Daniel Jackson 2008	 15 



equivalence
 
can define your own equality notion 
‣ but is any spec reasonable? 

reasonable equality predicates 
‣ define objects to be equal when they represent the same abstract value 

a simple theorem 
‣ if we define a ≈ b when f(a) = f(b) for some function f 
‣ then the predicate ≈ will be an equivalence 

an equivalence relation is one that is 
‣ reflexive: a ≈ a 
‣ symmetric: a ≈ b ⇒ b ≈ a 
‣ transitive: a ≈ b ∧ b ≈ c ⇒ a ≈ c 

16© Daniel Jackson 2008 



a running example
 
a duration class 
‣ represents durations measured in minutes 

public class Duration { 
private final int hours;

  private final int mins; 
public Duration(int h, int h) {hours = h; mins = m;} 
public int getMins() {return hours*60 + mins;}

 } 

17© Daniel Jackson 2008 



abstraction function
 
Duration d1 = new Duration (1, 2);
 
Duration d2 = new Duration (1, 3);
 
Duration d3 = new Duration (0, 62);
 

(1,2)

(0,62)

(1,3)

62

63

concrete abstract



bug #1
 
here’s our first broken equality method 
‣ violates transitivity: easy to see why 

public class Duration { 
private final int hours;

  private final int mins;
 static final int CLOCK_SKEW = ...; 
public boolean equals (Duration d) {  // problematic, see next slide 

if (d == null) return false; 
return Math.abs(d.getMins()-this.getMins()) < CLOCK_SKEW;

 }
 } 

19© Daniel Jackson 2008 



bug #2 
what happens if you fail to override equals 
‣ note that outcome depends on declaration, not runtime type (aagh!) 

public class Duration {
 
private final int hours;


  private final int mins;
 
public Duration(int h, int h) {hours = h; mins = m;}
 
public boolean equals (Duration d) {
 
return d.getMins() == this.getMins();


 }

 }
 

Duration d1 = new Duration(1,2);
 
Duration d2 = new Duration(1,2);
 
System.out.println(d1.equals(d2)); // prints true
 

Object d1 = new Duration(1,2);
 
Object d2 = new Duration(1,2);
 
System.out.println(d1.equals(d2)); // prints false!
 

20© Daniel Jackson 2008 



explaining bug #2
 
what’s going on? 
‣ we’ve failed to override Object.equals 
‣ method is chosen using compile-time type 
‣ method has been overloaded, not overridden 

public class Object {
 public boolean equals (Object o) {return o == this;}
 } 

public class Duration extends Object {
 public boolean equals (Object o) {return o == this;} 
public boolean equals (Duration d) {
 

return d.getMins() == this.getMins();

 }


 } 

21© Daniel Jackson 2008 



!xing equals
 
here’s a fix to the problem 
‣ compile-time declaration no longer affects equality 

@Override // compile error if doesn’t override superclass method 
public boolean equals(Object o) { 

if (! (o instanceof Duration)) 
return false;


  Duration d = (Duration) o;
 
return d.getMins() == this.getMins();


 }
 

22© Daniel Jackson 2008 



equality and subclassing
 
now considering extending the type 
‣ how should equality be determined? 
‣ can’t rely on inherited equals method, because seconds ignored 

public class ShortDuration extends Duration {

  private final int secs;

 ...
 
private ShortDuration (int h, int m, int s) {...};


 public int getSecs () {return 3600*hours + 60*mins + secs;}

 ...

 }
 

23© Daniel Jackson 2008 



bug #3
 
an attempt at writing equals for subclass
 

@Override 
public boolean equals(Object o) {
 

if (! (o instanceof ShortDuration))
 
return false;


    ShortDuration d = (ShortDuration) o;
 
return d.getSecs () == this.getSecs();


 }
 

will this work? 
‣ no, now it’s not symmetric! 

Duration d1 = new ShortDuration(1,2,3);
 
Duration d2 = new Duration(1,2);
 
System.out.println(d1.equals(d2)); // false
 
System.out.println(d2.equals(d1)); // true
 

24© Daniel Jackson 2008 



bug #4
 
yet another attempt 
‣ this time not transitive 

@Override public boolean equals(Object o) { 
if (! (o instanceof Duration)) return false; 
if (! (o instanceof ShortDuration)) return super.equals (o);

    ShortDuration d = (ShortDuration) o; 
return d.getSecs () == this.getSecs();

 } 

Duration d1 = new ShortDuration(1,2,3);
 
Duration d2 = new Duration(1,2);
 
Duration d3 = new ShortDuration(1,2,4);
 
System.out.println(d1.equals(d2)); // true
 
System.out.println(d2.equals(d3)); // true
 
System.out.println(d1.equals(d3)); // false!
 

25© Daniel Jackson 2008 



solving the subclassing snag
 
no really satisfactory solution 

superclass equality rejects subclass objects 
‣ can write this 

if (!o.getClass().equals(getClass())) return false; 
‣ but this is inflexible: can’t extend just to add functionality, eg 

better solution 
‣ avoid inheritance, and use composition instead 
‣ see Bloch, Effective Java, Item 14 

26© Daniel Jackson 2008 



hash maps
 



hash map structure
 
representation 
‣ array of bucket lists 

class HashMap <K,V> { 
Entry<K,V>[] table; 
class Entry<K, V> { K key; V val; Entry<K,V> next; ... } 

© Daniel Jackson 2008 28 

Entry

k1: K v1: V

Entrynext

key val

k2: K v2: V

key val

0

1

2

3

4

HashMap

table



hash map operations
 
operations 
‣	 put(k,v): to associate value v with key k 

compute index i = hash(k) 
hash(k) = k.hashCode & table.length-1 (eg) 
if find entry in table[i] with key equal to k, replace val by v 

otherwise add new entry for (k, v) 
‣	 get(k): to get value associated with key k 

examine all entries in table[i] as for insertion 
if find one with key equal to k, return val 

else return null 

resizing 
‣ if map gets too big, create new array of twice the size and rehash 
© Daniel Jackson 2008	 29 



hashing principle
 
why does hashing work? 

e: table[i].*next means e 
ranges over set of all entries reachable 

from table[i] in zero or more 
applications of  next 

‣ rep invariant: entries are in buckets indexed by hash 
all i: table.indexes, e: table[i].*next | hash(e.key) == i 

‣ from object contract: equal keys have equal hashes 

all k, k’: Key | k.equals(k’) ⇒ hash(k) == hash(k’) 

‣ consequence: need only look at one index 

all k: Key, i: table.indexes | i != hash(k) ⇒ all e: table[i].*next | !e.key.equals(k) 

‣ also additional rep invariant: only one entry per key 
‣ consequence: can stop at first match 

finally, keep buckets to small constant number of entries 
‣ then put and get will be constant time 

© Daniel Jackson 2008 30 



mutating keys
 
what happens if you mutate a hash map’s key? 

if equals and hashCode depend only on key’s identity
 
‣ nothing bad happens 

if equals and hashCode depend on key’s fields 
‣ then value of hashCode can change 
‣ rep invariant of hash map is violated 
‣ lookup may fail to find key, even if one exists 

problem is example of ‘abstract aliasing’ 
‣ hash map and key are aliased 

© Daniel Jackson 2008 31 



example
 
what does this print?
 

public class BrokenHash {
 

 static class Counter { 

 
 int i; 

 
 void incr () {i++;} 

 

 


 

 

@Override public boolean equals (Object o) { 

 if (!(o instanceof Counter)) return false; 


 

 


 

 


 

 

Counter c = (Counter) o; 
return c.i == i; 


 

 


 

 

}
@Override public int hashCode () {return i;} 


 } 

 


 

 

public static void main (String[] args) { 

 Set m = new HashSet <Counter> (); 


 

 


 

 

Counter c = new Counter();
m.add(c); 


 

 


 

 

System.out.println ("m contains c: " + (m.contains(c) ? "yes" : "no"));
c.incr(); 


 

 


 
} 

System.out.println ("m contains c: " + (m.contains(c) ? "yes" : "no")); 

} 

© Daniel Jackson 2008 32 



so what to do?
 
option #1 (Liskov) 
‣ equals on mutable types compares references 
‣ no problem with keys, but two sets with same elements are not equal 

option #2 (Java Collections) 
‣ equals on mutable types compares current values 
‣ forbid modification of objects held as keys 
‣ more convenient for comparing collections, but dangerous 

is Java consistent? 
‣ Object contract in Java says 

It is consistent: for any reference values x and y, multiple invocations of x.equals(y) consistently return true 

or consistently return false, provided no information used in equals comparisons on the object is modified 

© Daniel Jackson 2008 33 



non-determinism
 
to iterate over elements of a hash set 
‣ use HashSet.iterator() 
‣ elements yielded in unspecified order 

what determines order? 
‣ code iterates over table indices 
‣ so order related to hashing function 
‣ depends on hash code, thus (for mutables) on object addresses 

so this means 
‣ different program runs likely to give different order 
‣ this can be a real nuisance: consider regression testing, for example 
‣ solution: use a TreeSet instead 

© Daniel Jackson 2008 34 



summary
 



principles
 
object heap is a graph 
‣ to understand mutation & aliasing, can’t think in terms of values 

equality is user-defined but constrained 
‣ must be consistent and an equivalence 

abstract aliasing complicates 
‣ may even break rep invariant (eg, mutating hash key) 

© Daniel Jackson 2008 36 


